模拟退火

模拟退火(英语:Simulated annealing,缩写作SA)是一种通用概率算法,常用来在一定时间内寻找在一个很大搜寻空间中的近似最優解。模拟退火在1983年为S. Kirkpatrick, C. D. Gelatt和M. P. Vecchi所发明,V. Černý也在1985年独立发明此算法

模拟退火算法可用于求解组合问题。此处将模拟退火算法应用于求解旅行商问题,求出连接125个点的最小路线长度
使用模拟退火算法求解120个点的三维旅行商问题

简介

模拟退火来自冶金学的专有名词退火。退火是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。

模拟退火的原理也和金属退火的原理近似:我们将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。

可以证明,模拟退火算法所得解依概率收敛到全局最优解。

演算步骤

初始化

由一个产生函数从当前解产生一个位于解空间的新解,并定义一个足够大的数值作为初始温度。

迭代过程

迭代过程是模拟退火算法的核心步骤,分为新解的产生和接受新解两部分:

  1. 由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
  2. 计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
  3. 判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropolis准则:若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
  4. 当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率1收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。

停止准则

迭代过程的一般停止准则:温度T降低至某阈值时,或连续若干次迭代均未接受新解时,停止迭代,接受当前寻找的最优解为最终解。

退火方案

在某个温度状态T下,当一定数量的迭代操作完成后,降低温度T,在新的温度状态下执行下一个批次的迭代操作。

虚拟码(伪代码)

寻找能量   最低的状态  

s := s0; e := E(s)                           // 設定目前狀態為s0,其能量E (s0)
k := 0                                       // 評估次數k
while k < kmax and e > emin                 // 若還有時間(評估次數k還不到kmax)且結果還不夠好(能量e不夠低)則:
    sn := neighbour(s)                           // 隨機選取一鄰近狀態sn
    en := E(sn)                                  // sn的能量為E (sn)
    if random() < P(e, en, temp(k/kmax))         // 決定是否移至鄰近狀態sn
        s := sn; e := en                               // 移至鄰近狀態sn
    k := k + 1                                   // 評估完成,次數k加一
return s                                    // 回傳狀態s

延伸阅读

参阅

外部链接