在实分析中,达布定理(英语:Darboux's theorem)得名于让·加斯东·达布。达布定理说明所有的实导函数(是某个实值函数的导数的函数)都具有介值性质:任一个区间关于实导函数的值域仍是区间。即是说,若 f 为可导函数,则对任意区间I,f′(I) 仍为区间。
当函数 f 是一阶连续可导函数(C1)时,由介值定理,达布定理显然成立。当导函数 f′ 不连续时,达布定理说明 f′ 仍具有介值性质。
历史
19世纪时,大部分数学家认为介值定理已经可以刻画出连续函数。但在1875年,让·加斯东·达布证明这个想法是错误的,因为连续函数的导函数仍然具有介值性质,但不一定是连续函数。一个很常用的反例是函数:
- 当
- 当
其导数在0处并不连续。
内容
设 为闭区间 上的实值可导函数,那么对介于 和 之间的任意 ,存在 属于 使得 。
证明
不失一般性,我们可假设 。又设 ,则 。只需找到 在 上的一个零点即可。
由于 是 上的连续函数,由极值定理, 在 上达到极大值。由于 ,极大值不在 处取到。同理,由于 ,极大值也不在b处取到。设 为取到极大值的点,这时, 。于是定理得证。
参见
参考资料
- 万丽 , 李少琪 , 阎庆旭,《微分达布(Darboux)定理的几种新证法及其推广》,《数学的实践与认识》2003年11期
- 潘继斌,《达布(Darboux)定理及其应用》,《湖北师范学院学报(自然科学版)》2000年01期
外部链接