阿贝尔定理阿贝尔定理是幂级数的一个重要结果。 目录 1 定理 2 证明 3 例子和应用 4 参考来源 定理 设 f ( z ) = ∑ n ≥ 0 a n z n {\displaystyle f(z)=\sum _{n\geq 0}a_{n}z^{n}} 为一幂级数,其收敛半径为R。若对收敛圆(模长为 R 的复数的集合)上的某个复数 z 0 {\displaystyle z_{0}} ,级数 ∑ n ≥ 0 a n z 0 n {\displaystyle \sum _{n\geq 0}a_{n}z_{0}^{n}} 收敛,则有: lim t → 1 − f ( t z 0 ) = ∑ n ≥ 0 a n z 0 n {\displaystyle \lim _{t\to 1^{-}}f(tz_{0})=\sum _{n\geq 0}a_{n}z_{0}^{n}} 。 若 ∑ n ≥ 0 a n R n {\displaystyle \sum _{n\geq 0}a_{n}R^{n}} 收敛,则结果显然成立,无须引用这个定理。 证明 设级数 ∑ n ≥ 0 a n z 0 n {\displaystyle \sum _{n\geq 0}a_{n}z_{0}^{n}} 收敛,下面证明: lim t → 1 − f ( t z 0 ) = lim t → 1 − ∑ n ≥ 0 a n t n z 0 n = ∑ n ≥ 0 a n z 0 n {\displaystyle \lim _{t\to 1^{-}}f(tz_{0})=\lim _{t\to 1^{-}}\sum _{n\geq 0}a_{n}t^{n}z_{0}^{n}=\sum _{n\geq 0}a_{n}z_{0}^{n}} 令 b n = a n z 0 n {\displaystyle b_{n}=a_{n}z_{0}^{n}} ,则幂级数 ∑ n ≥ 0 b n z n {\displaystyle \sum _{n\geq 0}b_{n}z^{n}} 的收敛半径为1,并且只需证明 lim t → 1 − ∑ n ≥ 0 b n t n = ∑ n ≥ 0 b n {\displaystyle \lim _{t\to 1^{-}}\sum _{n\geq 0}b_{n}t^{n}=\sum _{n\geq 0}b_{n}} 令 b 0 ′ = b 0 − ∑ n ≥ 0 b n {\displaystyle b_{0}^{\prime }=b_{0}-\sum _{n\geq 0}b_{n}} ,则可化归到 ∑ n ≥ 0 b n = 0 {\displaystyle \sum _{n\geq 0}b_{n}=0} ,于是以下只需要考虑 ∑ n ≥ 0 b n = 0 {\displaystyle \sum _{n\geq 0}b_{n}=0} 的情况。 设 S n = ∑ k = 0 n b n {\displaystyle S_{n}=\sum _{k=0}^{n}b_{n}} ,那么 lim n → + ∞ S n = 0 {\displaystyle \lim _{n\to +\infty }S_{n}=0} 。由幂级数性质可知 ∑ n ≥ 0 S n z n {\displaystyle \sum _{n\geq 0}S_{n}z^{n}} 的收敛半径也是1。于是 . lim N → + ∞ ∑ n = 0 N b n t n = lim N → + ∞ ∑ n = 0 N ( S n − S n − 1 ) t n {\displaystyle .\ \ \lim _{N\to +\infty }\sum _{n=0}^{N}b_{n}t^{n}=\lim _{N\to +\infty }\sum _{n=0}^{N}(S_{n}-S_{n-1})t^{n}} = lim N → + ∞ ( ∑ n = 0 N − 1 S n ( t n − t n + 1 ) + S N t N ) {\displaystyle =\lim _{N\to +\infty }\left(\sum _{n=0}^{N-1}S_{n}(t^{n}-t^{n+1})+S_{N}t^{N}\right)} = ( 1 − t ) ∑ n = 0 ∞ S n t n {\displaystyle =(1-t)\sum _{n=0}^{\infty }S_{n}t^{n}} (因为 lim n → + ∞ S n t n = 0 {\displaystyle \lim _{n\to +\infty }S_{n}t^{n}=0} )对于任意的 ϵ > 0 {\displaystyle \epsilon >0} ,固定 N 0 {\displaystyle N_{0}} 使得 ∀ m > N 0 {\displaystyle \forall m>N_{0}} , | s m | < ϵ 2 {\displaystyle |s_{m}|<{\frac {\epsilon }{2}}} 再固定 δ {\displaystyle \delta } 使得 ∀ 0 ≤ t ≤ δ {\displaystyle \forall 0\leq t\leq \delta } , | 1 − t | ∑ n = 0 N 0 S n ≤ ϵ 2 {\displaystyle |1-t|\sum _{n=0}^{N_{0}}S_{n}\leq {\frac {\epsilon }{2}}} 于是对 ∀ 0 ≤ t ≤ δ {\displaystyle \forall 0\leq t\leq \delta } , . | lim N → + ∞ ∑ n = 0 N b n t n | ≤ | ( 1 − t ) ∑ n = 0 N 0 S n t n | + | ( 1 − t ) ∑ n = N 0 + 1 ∞ S n t n | {\displaystyle .\ \ |\lim _{N\to +\infty }\sum _{n=0}^{N}b_{n}t^{n}|\leq |(1-t)\sum _{n=0}^{N_{0}}S_{n}t^{n}|+|(1-t)\sum _{n=N_{0}+1}^{\infty }S_{n}t^{n}|} ≤ ϵ 2 + | 1 − t | ϵ 2 ∑ n = N 0 + 1 ∞ | t | n ≤ ϵ 2 + ϵ 2 | 1 − t | 1 − | t | {\displaystyle \leq {\frac {\epsilon }{2}}+|1-t|{\frac {\epsilon }{2}}\sum _{n=N_{0}+1}^{\infty }|t|^{n}\leq {\frac {\epsilon }{2}}+{\frac {\epsilon }{2}}{\frac {|1-t|}{1-|t|}}} = ϵ {\displaystyle \displaystyle =\epsilon } 这就证明了 lim t → 1 − ∑ n ≥ 0 b n t n = 0 = ∑ n ≥ 0 b n {\displaystyle \lim _{t\to 1^{-}}\sum _{n\geq 0}b_{n}t^{n}=0=\sum _{n\geq 0}b_{n}} 于是阿贝尔定理得证。 从证明中可以看出,对于一个固定的正数 α {\displaystyle \alpha } ,设区域: D α = { | t | ≤ 1 ∣ | 1 − t | 1 − | t | ≤ α } {\displaystyle D_{\alpha }=\left\{|t|\leq 1\mid {\frac {|1-t|}{1-|t|}}\leq \alpha \right\}} 那么只要 t {\displaystyle t} 在 D α {\displaystyle D_{\alpha }} 趋近于1,就有阿贝尔定理成立。 例子和应用 阿贝尔定理的一个有用应用是计算已知收敛级数。方法是通过在级数每项后加上 x n {\displaystyle x^{n}} 项,将问题转换为幂级数求和,最后再计算 x 趋于 1 时幂级数的极限。由阿贝尔定理可知,这个极限就是原级数的和。 为计算收敛级数 ∑ n ≥ 1 ( − 1 ) n + 1 n {\displaystyle \sum _{n\geq 1}{\frac {(-1)^{n+1}}{n}}} ,设 f ( x ) = ∑ n ≥ 1 ( − 1 ) n + 1 x n n = log ( 1 + x ) {\displaystyle f(x)=\sum _{n\geq 1}{\frac {(-1)^{n+1}x^{n}}{n}}=\log(1+x)} 。于是有 ∑ n ≥ 1 ( − 1 ) n + 1 n = lim x → 1 − f ( x ) = log 2 {\displaystyle \sum _{n\geq 1}{\frac {(-1)^{n+1}}{n}}=\lim _{x\to 1^{-}}f(x)=\log 2} 为计算收敛级数 ∑ n ≥ 0 ( − 1 ) n 2 n + 1 {\displaystyle \sum _{n\geq 0}{\frac {(-1)^{n}}{2n+1}}} ,设 g ( x ) = ∑ n ≥ 0 ( − 1 ) n x 2 n + 1 2 n + 1 = arctan ( x ) {\displaystyle g(x)=\sum _{n\geq 0}{\frac {(-1)^{n}x^{2n+1}}{2n+1}}=\arctan(x)} 。因此有 lim x → 1 − g ( x ) = arctan ( 1 ) = π 4 = ∑ n ≥ 0 ( − 1 ) n 2 n + 1 {\displaystyle \lim _{x\to 1^{-}}g(x)=\arctan(1)={\frac {\pi }{4}}=\sum _{n\geq 0}{\frac {(-1)^{n}}{2n+1}}} 参考来源 (法文)Srishti.D.Chatterji. Cours d'Analyse. Editions polytechniques et universitaires romandes. 1997. (法文)Alekseev. Theorème D'Abel: Un Cours D'Arnold. Cassini. 2007.