空间分割定理
此条目需要精通或熟悉数学的编者参与及协助编辑。 (2010年11月6日) |
此条目的语调或风格可能不适合百科全书的写作方式。 (2010年8月10日) |
空间分割定理,是一种空间分割的方式。
概述
L(0,k)=1,L(n,1)=n+1,且L(n,k)=L(n-1,k)+L(n-1,k-1)。条件:n∈N,k∈N+
这样可以快速求出L(n,k)的值。
根据递推关系,可以试着将他们全部展开,将每一项都变成l(0,k-x)的形式,他们各项的系数与“杨辉三角”相符合,但是这只适用于n<k(可以推广至n<=k)。即:l(n,k)=2^n(n<=k)
结论
n个(k-1)维空间最多能将一个k维空间分割成L(n,k)个部分(这里说的空间皆为平直空间)。 其中L(n,k)满足以下性质:
1°定义域:n∈N,k∈N+。
2°初始值:L(0,k)=1,L(n,1)=n+1。
3°递推关系:L(n,k)=L(n-1,k)+L(n-1,k-1)。
L(n,k)有一个简洁的表达式,即: L(n,k)= C(n,m)。
以上为空间分割定理。