黑克代数黑克代数,又名黑克环,是对称群环(group ring for the symmetric group) c S d {\displaystyle \mathbb {c} {\mathfrak {S}}_{d}} 的 ϵ − {\displaystyle \epsilon -} 形变,在代数数论及表示论都会出现。 定义 设 ϵ ∈ C {\displaystyle \epsilon \in \mathbb {C} } l ≥ 1 {\displaystyle l\geq 1} 黑克环 H l ( ϵ ) {\displaystyle {\mathfrak {H}}_{l}(\epsilon )} 产生自: σ 1 , σ 2 , . . . . . . , σ l − 1 {\displaystyle \sigma _{1},\sigma _{2},......,\sigma _{l-1}} 而 σ i {\displaystyle \sigma _{i}} 要符合: σ i σ i − 1 = σ i − 1 σ i = 1 {\displaystyle \sigma _{i}\sigma _{i}^{-1}=\sigma _{i}^{-1}\sigma _{i}=1} 当|i-j|>1,就有 σ i σ j = σ j σ i {\displaystyle \sigma _{i}\sigma _{j}=\sigma _{j}\sigma _{i}} 当j=i+1,就有 σ i σ j σ i = σ j σ i σ j {\displaystyle \sigma _{i}\sigma _{j}\sigma _{i}=\sigma _{j}\sigma _{i}\sigma _{j}} ( σ i + 1 ) ( σ i − ϵ ) = 0 {\displaystyle (\sigma _{i}+1)(\sigma _{i}-\epsilon )=0} 当l=1时,就约定 H 1 ( ϵ ) = C {\displaystyle {\mathfrak {H}}_{1}(\epsilon )=\mathbb {C} } 。 留意:最后一项条件中当 ϵ = 1 {\displaystyle \epsilon =1} 时, σ i 2 = 1 {\displaystyle \sigma _{i}^{2}=1} ,此所谓形变。 参考 Vyjayanthi Chari / Andrew Pressley (1994), "A Guide to Quantum Groups", Cambridge, ISBN 0-521-55884-0 , p.332