Tanc函数Tanc 函数 定义如下[1] Tanc ( z ) = tan ( z ) z {\displaystyle \operatorname {Tanc} (z)={\frac {\tan(z)}{z}}} Tanc 2D plot Tanc'(z) 2D plot Tanc integral 2D plot Tanc integral 3D plot 虚域虚部 Im ( tan ( x + i y ) x + i y ) {\displaystyle \operatorname {Im} \left({\frac {\tan(x+iy)}{x+iy}}\right)} 虚域实部 Re ( tan ( x + i y ) x + i y ) {\displaystyle \operatorname {Re} \left({\frac {\tan \left(x+iy\right)}{x+iy}}\right)} 绝对值 | tan ( x + i y ) x + i y | {\displaystyle \left|{\frac {\tan(x+iy)}{x+iy}}\right|} 一阶导数 1 − tan ( z ) ) 2 z − tan ( z ) z 2 {\displaystyle {\frac {1-\tan(z))^{2}}{z}}-{\frac {\tan(z)}{z^{2}}}} 导数实部 − Re ( − 1 − ( tan ( x + i y ) ) 2 x + i y + tan ( x + i y ) ( x + i y ) 2 ) {\displaystyle -\operatorname {Re} \left(-{\frac {1-(\tan(x+iy))^{2}}{x+iy}}+{\frac {\tan(x+iy)}{(x+iy)^{2}}}\right)} 导数虚部 − Im ( − 1 − ( tan ( x + i y ) ) 2 x + i y + tan ( x + i y ) ( x + i y ) 2 ) {\displaystyle -\operatorname {Im} \left(-{\frac {1-(\tan(x+iy))^{2}}{x+iy}}+{\frac {\tan(x+iy)}{(x+iy)^{2}}}\right)} 导数绝对值 | − 1 − ( tan ( x + i y ) ) 2 x + i y + tan ( x + i y ) ( x + i y ) 2 | {\displaystyle \left|-{\frac {1-(\tan(x+iy))^{2}}{x+iy}}+{\frac {\tan(x+iy)}{(x+iy)^{2}}}\right|} 目录 1 与其他特殊函数的关系 2 级数展开 3 图集 4 参看 5 参考文献 与其他特殊函数的关系 Tanc ( z ) = 2 i K u m m e r M ( 1 , 2 , 2 i z ) ( 2 z + π ) K u m m e r M ( 1 , 2 , i ( 2 z + π ) ) {\displaystyle \operatorname {Tanc} (z)={\frac {2\,i{{\rm {KummerM}}\left(1,\,2,\,2\,iz\right)}}{\left(2\,z+\pi \right){{\rm {KummerM}}\left(1,\,2,\,i\left(2\,z+\pi \right)\right)}}}} Tanc ( z ) = 2 i H e u n B ( 2 , 0 , 0 , 0 , 2 i z ) ( 2 z + π ) H e u n B ( 2 , 0 , 0 , 0 , 2 1 / 2 i ( 2 z + π ) ) {\displaystyle \operatorname {Tanc} (z)={\frac {2\,i{\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {iz}}\right)}{\left(2\,z+\pi \right){\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {1/2\,i\left(2\,z+\pi \right)}}\right)}}} Tanc ( z ) = W h i t t a k e r M ( 0 , 1 / 2 , 2 i z ) W h i t t a k e r M ( 0 , 1 / 2 , i ( 2 z + π ) ) z {\displaystyle \operatorname {Tanc} (z)={\frac {{\rm {WhittakerM}}\left(0,\,1/2,\,2\,iz\right)}{{{\rm {WhittakerM}}\left(0,\,1/2,\,i\left(2\,z+\pi \right)\right)}z}}} 级数展开 Tanc z ≈ ( 1 + 1 3 z 2 + 2 15 z 4 + 17 315 z 6 + 62 2835 z 8 + 1382 155925 z 10 + 21844 6081075 z 12 + 929569 638512875 z 14 + O ( z 16 ) ) {\displaystyle \operatorname {Tanc} z\approx (1+{\frac {1}{3}}{z}^{2}+{\frac {2}{15}}{z}^{4}+{\frac {17}{315}}{z}^{6}+{\frac {62}{2835}}{z}^{8}+{\frac {1382}{155925}}{z}^{10}+{\frac {21844}{6081075}}{z}^{12}+{\frac {929569}{638512875}}{z}^{14}+O\left({z}^{16}\right))} ∫ 0 z tan ( x ) x d x = ( z + 1 9 z 3 + 2 75 z 5 + 17 2205 z 7 + 62 25515 z 9 + 1382 1715175 z 11 + 21844 79053975 z 13 + 929569 9577693125 z 15 + O ( z 17 ) ) {\displaystyle \int _{0}^{z}\!{\frac {\tan \left(x\right)}{x}}{dx}=(z+{\frac {1}{9}}{z}^{3}+{\frac {2}{75}}{z}^{5}+{\frac {17}{2205}}{z}^{7}+{\frac {62}{25515}}{z}^{9}+{\frac {1382}{1715175}}{z}^{11}+{\frac {21844}{79053975}}{z}^{13}+{\frac {929569}{9577693125}}{z}^{15}+O\left({z}^{17}\right))} 图集 Tanc abs complex 3D Tanc Im complex 3D plot Tanc Re complex 3D plot Tanc'(z) Im complex 3D plot Tanc'(z) Re complex 3D plot Tanc'(z) abs complex 3D plot Tanc abs plot Tanc Im plot Tanc Re plot Tanc'(z) Im plot Tanc'(z) abs plot Tanc'(z) Re plot Tanc integral abs plot Tanc integral Im plot Tanc integral Re plot Tanc abs complex 3D plot Tanc Im complex 3D plot Tanc Re complex 3D plot 参看 Sinhc函数 Coshc函数 Tanhc函数 双曲正弦积分函数参考文献 ^ Weisstein, Eric W. "Tanc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/TancFunction.html (页面存档备份,存于互联网档案馆)