克劳森函数是丹麦数学家托马斯·克劳森最先研究的特殊函数,定义如下:
克劳森函数的傅立叶级数为
基本性质
-
极大值点 :
-
极小值点 :
-
-
-
[1].
与伯努力多项式的关系
-
-
-
-
其中:
-
-
-
-
-
与多重对数函数的关系
参考文献
- ^ Lu and Perez, 1992,
- Adamchik, Viktor. S. Contributions to the Theory of the Barnes Function. arXiv:math/0308086v1 .
- Clausen, Thomas. Über die Function sin φ + (1/22) sin 2φ + (1/32) sin 3φ + etc.. Journal für die reine und angewandte Mathematik. 1832, 8: 298–300 [2015-03-07]. ISSN 0075-4102. (原始内容存档于2013-10-04).
- Wood, Van E. Efficient calculation of Clausen's integral. Math. Comp. 1968, 22 (104): 883–884. MR 0239733. doi:10.1090/S0025-5718-1968-0239733-9.
- Leonard Lewin, (Ed.). Structural Properties of Polylogarithms (1991) American Mathematical Society, Providence, RI. MR 1365432. doi:10.1016/0377-0427(95)00150-6.
- Borwein, Jonathan M.; Straub, Armin. Relations for Nielsen Polylogarithms (PDF). [2015-03-07]. (原始内容 (PDF)存档于2013-12-12).
- Borwein, Jonathan M.; Bradley, David M.; Crandall, Richard E. Computational Strategies for the Riemann Zeta Function (PDF). J. Comp. App. Math. 2000, 121: 247–296 [2015-03-07]. MR 1780051. doi:10.1016/s0377-0427(00)00336-8. (原始内容存档 (PDF)于2006-09-25).
- Kalmykov, Mikahil Yu.; Sheplyakov, A. LSJK - a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine integral. Comput. Phys. Comm. 2005, 172: 45–59. doi:10.1016/j.cpc.2005.04.013. arXiv:hep-ph/0411100
- Mathar, R. J. A C99 implementation of the Clausen sums. arXiv:1309.7504 .
- Lu, Hung Jung; Perez, Christopher A. Massless one-loop scalar three-point integral and associated Clausen, Glaisher, and L-functions (PDF). 1992 [2015-03-07]. (原始内容存档 (PDF)于2015-09-24).