支撑函数
在数学领域内,的一个非空的闭凸子集的支撑函数,描述了从的支撑超平面(supporting hyperplane)到原点的距离。是上的一个凸函数。任意一个非空的闭凸子集都可以由它的支撑函数唯一确定。进一步地,作为集合上的函数,与这个集合上许多几何变换是相容的,比如伸缩变换、平移变换、旋转变换以及闵可夫斯基和。因为具有这些性质,支撑函数是凸分析或凸几何中最基础与重要的概念。
定义
的非空闭凸子集 的支撑函数是:
,其中
下面的性质并不要求集合A是闭且凸的:在 有界时,集合 表示最小的包含A的闭的半空间(half-space);进一步地,集合 就是A的支撑超平面(supporting hyperplane)。[1]
原点到A的支撑超平面的距离 满足这样的关系: 。取x 的模为1 就利用A的支撑函数描述了A的支撑超平面到原点的距离。
例子
- 单点集的支撑函数: ,
- 单位球的支撑函数: ,
- 取A为从a到-a的线段,则有:
引用
- ^ Bauschke, Heinz H; Combettes, Patrick L. Convex Analysis and Monotone Operator Theory in HilBert Spaces. Springer New York Dordrecht Heidelberg London: Springer. 2011: 109. ISBN 978-1-4419-9466-0.