质量维度一费米子

理论物理学宇宙学中,半自旋质量维度一费米子(mass dimension one fermions of spin one half)是暗物质的候选者。这些费米子与已知的物质粒子,如电子或中微子,有着根本的不同。尽管它们被有着半自旋,但它们并不是由著名的狄拉克体系描述的,而是由一种旋量克莱恩-戈登体系(spinorial Klein-Gordon formalism)描述的。

2004年,Dharam Vir Ahluwalia(IIT Guwahati)与Daniel Grumiller合作,提出了一个关于质量维度一半自旋费米子的意外理论发现 [1][2]。在随后的十年中,许多小组探索了新构造有趣的数学和物理性质,而D. V. Ahluwalia 和他的学生进一步完善了体系 [3][4][5][6][7][8][9][10][11][12][13][14][15][16]

然而,体系有两个令人不安的特点,即非局域性和对洛伦兹对称的微妙破坏。这两个问题的起源现在被追溯到一个隐藏的自由定义,旋量和伴随的关联场[17]。因此,现在有了一个全新的自旋半费米子量子理论,它不存在上述所有问题。新费米子的相互作用不仅限于四维四次自相互作用,而且限于与希格斯粒子的四维耦合。新费米子与中微子的广义Yukawa耦合提供了迄今为止未被怀疑的轻子数违反来源。因此,新的费米子为标准模型的狄拉克费米子提出了一个第一原则,暗物质伙伴与质量维度的对比,后者为三个半费米子与前者为一个半费米子,而没有改变费米子到玻色子的统计数据。

质量维度一费米子自旋半场用Elko场作为其展开系数。Elko是最初德语 "Eigenspinoren des Ladungskonjugationsoperators"的缩写,表示自旋体,它们是电荷共轭算符的本征自旋体。由于新费米子的质量维数与标准模型物质场不匹配,他们被认为是暗物质的候选者。由于它们的类标量质量维数,它们与质量维数3/2狄拉克费米子有显著差异[18]

质量维度一费米子通过提供第一原理暗物质和暗能量场,对宇宙学有着意想不到的影响。2005年Ahluwalia-Grumiller 论文发表后,Christian Boehmer率先将Elko应用到宇宙学中,并认为Elko不仅是主要的暗物质候选者,也是宇宙膨胀的主要候选者[19]。Einstein–Cartan–Elko系统由Boehmer首次引入宇宙学中。其他人已经证明,Elko也可以诱导一个时变的宇宙学常数[20]。Abhishek Basak和同事们认为,快速滚动的宇宙膨胀吸引子点对于Elko来说是独一无二的,它独立于潜在的形式[21][22]。Roldao da Roch研究了膜上的Elko局域化现象[23][24],并将其作为一种探索时空奇异拓扑特征的工具[25]

以下参考文献作为Elko场和质量维度一费米子的参考 [26][27][28][21][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][39][44][45][46][47][48][48]中。

阿鲁瓦利亚在2017年解释了如何规避温伯格不走定理。同样在2017年发现[49][50],质量维度一费米子即使没有宇宙学常数,也能通过量子效应诱导一个“宇宙学常数”项。这些导致非消失的效应可能是早期宇宙阶段膨胀阶段的原因。此外,对于较晚的演化,对应于具有时变宇宙学项的模型,这种量子效应与先前的最新研究一致[51]


参考文献

  1. ^ D. V. Ahluwalia and D. Grumiller, Spin half fermions with mass dimension one: Theory, phenomenology, and dark matter, JCAP 0507 012 (2005) doi:10.1088/1475-7516/2005/07/012 [hep-th/0412080]
  2. ^ D. V. Ahluwalia and D. Grumiller, Dark matter: A Spin one half fermion field with mass dimension one?, Phys. Rev. D 72 ,067701 (2005) doi:10.1103/PhysRevD.72.067701 [hep-th/0410192].
  3. ^ D. V. Ahluwalia and A. C. Nayak, Elko and mass dimension one field of spin one half: causality and Fermi statistics, Int. J. Mod. Phys. D 23, no. 14, 1430026 (2015) doi:10.1142/S0218271814300262 [arXiv:1502.01940 [hep-th]].
  4. ^ D. V. Ahluwalia and S. P. Horvath, Very special relativity as relativity of dark matter: The Elko connection, JHEP 1011, 078 (2010) doi:10.1007/JHEP11(2010)078 [arXiv:1008.0436 [hep-ph]].
  5. ^ D. V. Ahluwalia, C. Y. Lee and D. Schritt, Self-interacting Elko dark matter with an axis of locality, Phys. Rev. D 83, 065017 (2011) doi:10.1103/PhysRevD.83.065017 [arXiv:0911.2947 [hep-ph]].
  6. ^ D. V. Ahluwalia, C. Y. Lee and D. Schritt, Elko as self-interacting fermionic dark matter with axis of locality, Phys. Lett. B 687, 248 (2010) doi:10.1016/j.physletb.2010.03.010 [arXiv:0804.1854 [hep-th]].
  7. ^ A. E. Bernardini and R. da Rocha, Dynamical dispersion relation for ELKO dark spinor fields, Phys. Lett. B 717, 238 (2012) doi:10.1016/j.physletb.2012.09.004 [arXiv:1203.1049 [hep-th]].
  8. ^ R. da Rocha and W. A. Rodrigues, Jr., Where are ELKO spinor fields in Lounesto spinor field classification?, Mod. Phys. Lett. A 21, (2006) 65 doi:10.1142/S0217732306018482 [math-ph/0506075].
  9. ^ R. da Rocha and J. M. Hoff da Silva, From Dirac spinor fields to ELKO, J. Math. Phys. 48, 123517 (2007) doi:10.1063/1.2825840 [arXiv:0711.1103 [math-ph]].
  10. ^ L. Fabbri, Conformal Gravity with the most general ELKO Matter, Phys. Rev. D 85, 047502 (2012) doi:10.1103/PhysRevD.85.047502 [arXiv:1101.2566 [gr-qc]].
  11. ^ L. Fabbri and S. Vignolo, The most general ELKO Matter in torsional f(R)-theories, Annalen Phys. 524, 77 (2012) doi:10.1002/andp.201100006 [arXiv:1012.4282 [gr-qc]].
  12. ^ L. Fabbri, The Most General Cosmological Dynamics for ELKO Matter Fields, Phys. Lett. B 704, 255 (2011) doi:10.1016/j.physletb.2011.09.024 [arXiv:1011.1637 [gr-qc]].
  13. ^ K. E. Wunderle and R. Dick, A Supersymmetric Lagrangian for Fermionic Fields with Mass Dimension One, Can. J. Phys. 90, 1185 (2012) doi:10.1139/p2012-075 [arXiv:1010.0963 [hep-th]].
  14. ^ L. Fabbri, Zero Energy of Plane-Waves for ELKOs, Gen. Rel. Grav. 43, 1607 (2011) doi:10.1007/s10714-011-1143-4 [arXiv:1008.0334 [gr-qc]].
  15. ^ L. Fabbri, Causality for ELKOs, Mod. Phys. Lett. A 25, 2483 (2010) doi:10.1142/S0217732310033712 [arXiv:0911.5304 [gr-qc]].
  16. ^ R. da Rocha and J. M. Hoff da Silva, ELKO, flagpole and flag-dipole spinor fields, and the instanton Hopf fibration, Adv.\ Appl.\ Clifford Algebras 20, 847 (2010) doi:10.1007/s00006-010-0225-9 [arXiv:0811.2717 [math-ph]].
  17. ^ D. V. Ahluwalia, The theory of local mass dimension one fermions of spin one half, Adv. Appl. Clifford Algebras 27 (2017) no.3, 2247-2285 . doi:10.1007/s00006-017-0775-1
  18. ^ M. Dias, F. de Campos and J. M. Hoff da Silva, ``Exploring Elko typical signature, Phys. Lett. B 706, 352 (2012) doi:10.1016/j.physletb.2011.11.030 [arXiv:1012.4642 [hep-ph]].
  19. ^ C.G.Boehmer, The Einstein-Elko system: Can dark matter drive inflation?, Annalen Phys.\ 16, 325 (2007), doi:10.1002/andp.200610237 [gr-qc/0701087].
  20. ^ C. G. Boehmer, The Einstein-Cartan-Elko system, Annalen Phys. 16, 38 (2007) doi:10.1002/andp.200610216 [gr-qc/0607088].
  21. ^ 21.0 21.1 S.H. Pereira et al. Λ(t) cosmology induced by a slowly varying Elko field, JCAP 1701, no. 01, 055 (2017) doi:10.1088/1475-7516/2017/01/055 [arXiv:1608.02777 [gr-qc]].
  22. ^ A. Basak, J. R. Bhatt, S. Shankaranarayanan and K. V. Prasantha Varma, Attractor behaviour in ELKO cosmology, JCAP 1304, 025 (2013) doi:10.1088/1475-7516/2013/04/025 [arXiv:1212.3445 [astro-ph.CO]].
  23. ^ H. M. Sadjadi, On coincidence problem and attractor solutions in ELKO dark energy model, Gen. Rel. Grav.44, 2329 (2012) doi:10.1007/s10714-012-1392-x [arXiv:1109.1961 [gr-qc]].
  24. ^ S. H. Pereira, A. Pinho S.S. and J. M. Hoff da Silva, Some remarks on the attractor behaviour in ELKO cosmology, JCAP 1408, 020 (2014) doi:10.1088/1475-7516/2014/08/020 [arXiv:1402.6723 [gr-qc]].
  25. ^ R. da Rocha, J. M. Hoff da Silva and A. E. Bernardini, Elko spinor fields as a tool for probing exotic topological spacetime features, Int. J. Mod. Phys. Conf. Ser. 3, 133 (2011). doi:10.1142/S201019451100122X
  26. ^ I. C. Jardim, G. Alencar, R. R. Landim and R. N. Costa Filho, Solutions to the problem of ELKO spinor localization in brane models, Phys.\ Rev.\ D 91, no. 8, 085008 (2015) doi:10.1103/PhysRevD.91.085008 [arXiv:1411.6962 [hep-th]]
  27. ^ Y. X. Liu, X. N. Zhou, K. Yang and F. W. Chen, Localization of 5D Elko Spinors on Minkowski Branes, Phys. Rev. D 86, 064012 (2012) doi:10.1103/PhysRevD.86.064012 [arXiv:1107.2506 [hep-th]].
  28. ^ Y. Y. Li, Y. P. Zhang, W. D. Guo and Y. X. Liu, Fermion localization mechanism with derivative geometrical coupling on branes, arXiv:1701.02429 [hep-th] https://arxiv.org/abs/1701.02429页面存档备份,存于互联网档案馆).
  29. ^ A. Basak and S. Shankaranarayanan, Super-inflation and generation of first order vector perturbations in ELKO, JCAP 1505, no. 05, 034 (2015) doi:10.1088/1475-7516/2015/05/034 [arXiv:1410.5768 [hep-ph]].
  30. ^ J. Lee, T. H. Lee and P. Oh, Inflation driven by dark spinor and Higgs fields, Int. J. Mod. Phys. D 23, no. 14, 1444006 (2014). doi:10.1142/S0218271814440064
  31. ^ A. Pinho S. S., S. H. Pereira and J. F. Jesus, A new approach on the stability analysis in ELKO cosmology, Eur. Phys. J. C 75, no. 1, 36 (2015) doi:10.1140/epjc/s10052-015-3260-9 [arXiv:1407.3401 [gr-qc]].
  32. ^ B. Agarwal, P. Jain, S. Mitra, A. C. Nayak and R. K. Verma, ELKO fermions as dark matter candidates, Phys. Rev. D 92, 075027 (2015) doi:10.1103/PhysRevD.92.075027 [arXiv:1407.0797 [hep-ph]].
  33. ^ J. M. Hoff da Silva and S. H. Pereira, Exact solutions to Elko spinors in spatially flat Friedmann-Robertson-Walker spacetimes, JCAP 1403, 009 (2014) doi:10.1088/1475-7516/2014/03/009 [arXiv:1401.3252 [hep-th]].
  34. ^ S. Kouwn, J. Lee, T. H. Lee and P. Oh, ``Dark spinor model with torsion and cosmology, Mod. Phys. Lett. A 28, 1350121 (2013) doi:10.1142/S0217732313501216 [arXiv:1211.2981 [gr-qc]].
  35. ^ J. Lee, T. H. Lee, P. Oh, T. H. Lee and P. Oh, Conformally-coupled dark spinor and FRW universe, Phys. Rev. D 86, 107301 (2012) doi:10.1103/PhysRevD.86.107301 [arXiv:1206.2263 [gr-qc]].
  36. ^ C. G. Boehmer, J. Burnett, D. F. Mota and D. J. Shaw, Dark spinor models in gravitation and cosmology, JHEP 1007, 053 (2010) doi:10.1007/JHEP07(2010)053 [arXiv:1003.3858 [hep-th]].
  37. ^ H. Wei, Spinor Dark Energy and Cosmological Coincidence Problem, Phys. Lett. B 695, 307 (2011) doi:10.1016/j.physletb.2010.10.053 [arXiv:1002.4230 [gr-qc]].
  38. ^ C. G.~Boehmer and J. Burnett, Dark spinors with torsion in cosmology, Phys. Rev. D 78, 104001 (2008) doi:10.1103/PhysRevD.78.104001 [arXiv:0809.0469 [gr-qc]].
  39. ^ 39.0 39.1 D. Gredat and S. Shankaranarayanan, Modified scalar and tensor spectra in spinor driven inflation, JCAP 1001, 008 (2010) doi:10.1088/1475-7516/2010/01/008 [arXiv:0807.3336 [astro-ph]].
  40. ^ S. H. Pereira and T. M. Guimarães, From inflation to recent cosmic acceleration: The Elko spinor field driving the evolution of the universe, arXiv:1702.07385 [gr-qc] https://arxiv.org/abs/1702.07385页面存档备份,存于互联网档案馆).
  41. ^ C. G. Boehmer and D. F. Mota, CMB Anisotropies and Inflation from Non-Standard Spinors, Phys. Lett. B 663, 168 (2008) doi:10.1016/j.physletb.2008.04.008 [arXiv:0710.2003 [astro-ph]].
  42. ^ M. Chaves and D. Singleton, A Unified Model of Phantom Energy and Dark Matter, SIGMA 4, 009 (2008) doi:10.3842/SIGMA.2008.009 [arXiv:0801.4728 [hep-th]].
  43. ^ C. G. Boehmer, Dark spinor inflation: Theory primer and dynamics, Phys. Rev. D 77, 123535 (2008) doi:10.1103/PhysRevD.77.123535 [arXiv:0804.0616 [astro-ph]].
  44. ^ C. G. Boehmer and J. Burnett, Dark spinors with torsion in cosmology, Phys. Rev. D 78, 104001 (2008) doi:10.1103/PhysRevD.78.104001 [arXiv:0809.0469 [gr-qc]].
  45. ^ D. V. Ahluwalia, Theory of neutral particles: McLennan-Case construct for neutrino, its generalization, and a fundamentally new wave equation, Int. J. Mod. Phys. A 11, 1855 (1996) doi:10.1142/S0217751X96000973 [hep-th/9409134].
  46. ^ D. V. Ahluwalia, Evidence for Majorana neutrinos: Dawn of a new era in space-time structure, hep-ph/0212222 https://arxiv.org/abs/hep-ph/0212222页面存档备份,存于互联网档案馆).
  47. ^ D. V. Ahluwalia, Extended set of Majorana spinors, a new dispersion relation, and a preferred frame, hep-ph/0305336 https://arxiv.org/abs/hep-ph/0305336页面存档备份,存于互联网档案馆).
  48. ^ 48.0 48.1 V. V. Dvoeglazov, Neutral particles in light of the Majorana-Ahluwalia ideas, Int. J. Theor. Phys. 34, 2467 (1995) doi:10.1007/BF00670779 [hep-th/9504158].
  49. ^ D. V. Ahluwalia, Evading Weinberg's no-go theorem to construct mass dimension one fermions: Constructing darkness Europhysics Letters 118 (2017) no.6, 60001 DOI: 10.1209/0295-5075/118/60001.
  50. ^ R. J. Bueno Rogerio, J. M. Hoff da Silva, M. Dias, S. H. Pereira, Effective lagrangian for a mass dimension one fermionic field in curved spacetime, [arXiv:1709.08707 [hep-th]], https://arxiv.org/abs/1709.08707页面存档备份,存于互联网档案馆
  51. ^ S.H. Pereira et al. Λ(t) cosmology induced by a slowly varying Elko field, JCAP 1701, no. 01, 055 (2017) doi:10.1088/1475-7516/2017/01/055 [arXiv:1608.02777 [gr-qc]].