弦论历史

弦论是将结合量子力学广义相对论万有理论理论物理学

弦论已得到数十年的深入研究,在历史上出现了两次超弦革命。在众多研究人员共同努力下,弦理论早已与量子引力粒子物理凝聚态物理宇宙学纯数学融汇贯通,发展成了一个广泛多样的学科。

S矩阵理论

维尔纳·海森堡1943年一项研究计划说[1]弦理论是S-矩阵理论的产物。[2]

约翰·惠勒于1937年引入S矩阵后,[3][4]从1950年后期到60年代,许多著名的理论家都接受并提倡。但该领域在70年代中期被边缘化并被丢弃[5] 并在80年代被量子色动力学取代了。[6]

1943年,维尔纳·海森堡提出了S矩阵理论作为粒子相互作用的原理。[7]

雷格理论

1950年代后期,不同人各自发现了存在许多自旋更高的强相互作用粒子,这很明显非基本粒子

双共振模型

加布里埃莱·韦内齐亚诺意大利弦论先驱于1968年建构。

玻色弦理论超弦理论

玻色弦理论

1974年,约翰·席瓦兹若埃尔·舍克[37]米谷民明[38]先驱建构。

他们研究了玻色子弦振动,发现特性与引力子匹配。这导致了玻色子弦理论的发展。

弦理论是根据泊里雅科夫作用量[39]描述弦如何在空间和时间中移动。像弹簧一样,弦往往会收缩以最小化其势能,但能量守恒会阻止它们消失而振荡。通过将量子力学应用于弦,可以推断出弦不同振动模式,每个振动状态又皆是不同粒子。每粒粒子的质量,以及相互作用的方式,都是由弦的振动方式决定。

第一次超弦革命

第二次超弦革命

1990年代,受对偶性的启发,爱德华·维顿造了个11维的M理论,把5种版本的10维超弦理论与11维超重力论推演成M理论的6个形。这些发现带动了第二次超弦革命有数百篇论文出现。

千禧年

参考

  • Rickles, Dean. A Brief History of String Theory: From Dual Models to M-Theory. Springer. 2014. ISBN 978-3-642-45128-7. 
  1. ^ Heisenberg, W. Die "beobachtbaren Größen" in der Theorie der Elementarteilchen. Zeitschrift für Physik. 1943, 120 (7): 513–538. Bibcode:1943ZPhy..120..513H. S2CID 120706757. doi:10.1007/bf01329800. 
  2. ^ Rickles 2014, p. 28 n. 17: "S-matrix theory had enough time to spawn string theory".
  3. ^ Wheeler, John Archibald. On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure. Phys. Rev. 1937, 52 (11): 1107–1122 [2022-06-18]. Bibcode:1937PhRv...52.1107W. S2CID 55071722. doi:10.1103/physrev.52.1107. (原始内容存档于2020-08-01). 
  4. ^ John Archibald Wheeler, "On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure", Phys. Rev. 52, 1107–1122 (1937).
  5. ^ Rickles 2014, p. 113:“An unfortunate (for string theory) series of events terminated the growing popularity that string theory was enjoying in the early 1970s.”
  6. ^ Rickles 2014, p. 4.
  7. ^ W. Heisenberg, "Die „beobachtbaren Größen“ in der Theorie der Elementarteilche"'. In: Zeitschrift für Physik, 120(7) (July 1943), pp. 513–53.
  8. ^ Gell-Mann, M. G. (1956). "Dispersion relations in pion-pion and photon-nucleon scattering." In J. Ballam, et al. (eds.), High energy nuclear physics, in: Proceedings of the Sixth Annual Rochester Conference Rochester: New York, USA, April 3–7, 1956 (pp. 30–6). New York: Interscience Publishers.
  9. ^ 9.0 9.1 Rickles 2014, p. 29.
  10. ^ Gell-Mann, M., and Goldberger, M. L. (1954). "The scattering of low energy photons by particles of spin 1/2." Physical Review, 96, 1433–8.
  11. ^ 11.0 11.1 Mandelstam, S. Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity general theory. Physical Review. 1958, 112 (4): 1344–1360. Bibcode:1958PhRv..112.1344M. doi:10.1103/physrev.112.1344. 
  12. ^ Chew, G. F.; Goldberger, M. L.; Low, F. E.; Nambu, Y. Application of dispersion relations to low energy meson-nucleon scattering (PDF). Physical Review. 1957, 106 (6): 1337–1344 [2022-06-18]. Bibcode:1957PhRv..106.1337C. doi:10.1103/physrev.106.1337. (原始内容 (PDF)存档于2020-07-31). 
  13. ^ Sakata, S. On a composite model for the new particles. Progress of Theoretical Physics. 1956, 16 (6): 686–688. Bibcode:1956PThPh..16..686S. doi:10.1143/PTP.16.686 . 
  14. ^ Chew, G. (1962). S-Matrix theory of strong interactions. New York: W.A. Benjamin, p. 32.
  15. ^ Kaiser, D. Nuclear democracy: Political engagement, pedagogical reform, and particle physics in postwar America. Isis. 2002, 93 (2): 229–268 [2022-06-18]. PMID 12198794. S2CID 28620266. doi:10.1086/344960. (原始内容存档于2020-08-01). 
  16. ^ Regge, Tullio, "Introduction to complex angular momentum," Il Nuovo Cimento Series 10, Vol. 14, 1959, p. 951.
  17. ^ White, Alan. R. (2000). "The Past and Future of S-Matrix Theory"页面存档备份,存于互联网档案馆).
  18. ^ Chew, Geoffrey; Frautschi, S. Principle of Equivalence for all Strongly Interacting Particles within the S-Matrix Framework. Physical Review Letters. 1961, 7 (10): 394–397 [2022-06-18]. Bibcode:1961PhRvL...7..394C. doi:10.1103/PhysRevLett.7.394. (原始内容存档于2022-06-18). 
  19. ^ Dolen, R.; Horn, D.; Schmid, C. Prediction of Regge-parameters of rho poles from low-energy pi-N scattering data. Physical Review Letters. 1967, 19 (7): 402–407. Bibcode:1967PhRvL..19..402D. doi:10.1103/physrevlett.19.402. 
  20. ^ Rickles 2014, pp. 38–9.
  21. ^ Veneziano, G. Construction of a crossing-symmetric, Reggeon-behaved amplitude for linearly rising trajectories. Il Nuovo Cimento A. 1968, 57 (1): 190–197 [2022-06-18]. Bibcode:1968NCimA..57..190V. S2CID 121211496. doi:10.1007/BF02824451. (原始内容存档于2022-05-19). 
  22. ^ Koba, Z.; Nielsen, H. Reaction amplitude for N-mesons: A generalization of the Veneziano-Bardakçi-Ruegg-Virasoro model. Nuclear Physics B. 1969, 10 (4): 633–655. Bibcode:1969NuPhB..10..633K. doi:10.1016/0550-3213(69)90331-9. 
  23. ^ Virasoro, M. Alternative constructions of crossing-symmetric amplitudes with Regge behavior. Physical Review. 1969, 177 (5): 2309–2311. Bibcode:1969PhRv..177.2309V. doi:10.1103/physrev.177.2309. 
  24. ^ Shapiro, J. A. Electrostatic analogue for the Virasoro model. Physics Letters B. 1970, 33 (5): 361–362. Bibcode:1970PhLB...33..361S. doi:10.1016/0370-2693(70)90255-8. 
  25. ^ Chan, H. M.; Paton, J. E. Generalized Veneziano Model with Isospin. Nucl. Phys. B. 1969, 10 (3): 516 [2022-06-18]. Bibcode:1969NuPhB..10..516P. doi:10.1016/0550-3213(69)90038-8. (原始内容存档于2018-01-21). 
  26. ^ Rickles 2014, p. 5.
  27. ^ Nambu, Y. (1970). "Quark model and the factorization of the Veneziano amplitude." In R. Chand (ed.), Symmetries and Quark Models: Proceedings of the International Conference held at Wayne State University, Detroit, Michigan, June 18–20, 1969 (pp. 269–277). Singapore: World Scientific.
  28. ^ Nielsen, H. B. "An almost physical interpretation of the dual N point function." Nordita preprint (1969); unpublished.
  29. ^ Susskind, L. Harmonic oscillator analogy for the Veneziano amplitude. Physical Review Letters. 1969, 23 (10): 545–547. Bibcode:1969PhRvL..23..545S. doi:10.1103/physrevlett.23.545. 
  30. ^ Susskind, L. Structure of hadrons implied by duality. Physical Review D. 1970, 1 (4): 1182–1186. Bibcode:1970PhRvD...1.1182S. doi:10.1103/physrevd.1.1182. 
  31. ^ Ramond, P. Dual Theory for Free Fermions. Phys. Rev. D. 1971, 3 (10): 2415. Bibcode:1971PhRvD...3.2415R. doi:10.1103/PhysRevD.3.2415. 
  32. ^ Neveu, A.; Schwarz, J. Tachyon-free dual model with a positive-intercept trajectory. Physics Letters. 1971, 34B (6): 517–518. Bibcode:1971PhLB...34..517N. doi:10.1016/0370-2693(71)90669-1. 
  33. ^ Rickles 2014, p. 97.
  34. ^ Rickles 2014, pp. 5–6, 44.
  35. ^ Rickles 2014, p. 77.
  36. ^ Rickles 2014, p. 11 n. 22.
  37. ^ Scherk, J.; Schwarz, J. Dual models for non-hadrons. Nuclear Physics B. 1974, 81 (1): 118–144. Bibcode:1974NuPhB..81..118S. doi:10.1016/0550-3213(74)90010-8. 
  38. ^ Yoneya, T. Connection of dual models to electrodynamics and gravidynamics. Progress of Theoretical Physics. 1974, 51 (6): 1907–1920. Bibcode:1974PThPh..51.1907Y. doi:10.1143/ptp.51.1907 . 
  39. ^ Zwiebach, Barton (2009). A First Course in String Theory. Cambridge University Press. p. 582.
  40. ^ Lovelace, Claud, Pomeron form factors and dual Regge cuts, Physics Letters B, 1971, 34 (6): 500–506, Bibcode:1971PhLB...34..500L, doi:10.1016/0370-2693(71)90665-4 .
  41. ^ Sakata, Fumihiko; Wu, Ke; Zhao, En-Guang (eds.), Frontiers of Theoretical Physics: A General View of Theoretical Physics at the Crossing of Centuries, World Scientific, 2001, p. 121.
  42. ^ Rickles 2014, p. 104.
  43. ^ J. L. Gervais and B. Sakita worked on the two-dimensional case in which they use the concept of "supergauge," taken from Ramond, Neveu, and Schwarz's work on dual models: Gervais, J.-L.; Sakita, B. Field theory interpretation of supergauges in dual models. Nuclear Physics B. 1971, 34 (2): 632–639. Bibcode:1971NuPhB..34..632G. doi:10.1016/0550-3213(71)90351-8. 
  44. ^ Gliozzi, F.; Scherk, J.; Olive, D. I. Supersymmetry, Supergravity Theories and the Dual Spinor Model. Nucl. Phys. B. 1977, 122 (2): 253. Bibcode:1977NuPhB.122..253G. doi:10.1016/0550-3213(77)90206-1. 
  45. ^ Rickles 2014, p. 147: "Green and Schwarz's anomaly cancellation paper triggered a very large increase in the production of papers on the subject, including a related pair of papers that between them had the potential to provide the foundation for a realistic unified theory of both particle physics and gravity."
  46. ^ Rickles 2014, p. 157.
  47. ^ Green, M. B.; Schwarz, J. H. Anomaly cancellations in supersymmetric D = 10 gauge theory and superstring theory. Physics Letters B. 1984, 149 (1–3): 117–122. Bibcode:1984PhLB..149..117G. doi:10.1016/0370-2693(84)91565-X. 
  48. ^ Johnson, Clifford V. D-branes. Cambridge University Press. 2006, pp. 169–70.
  49. ^ 49.0 49.1 Gross, D. J.; Harvey, J. A.; Martinec, E.; Rohm, R. Heterotic string. Physical Review Letters. 1985, 54 (6): 502–505. Bibcode:1985PhRvL..54..502G. PMID 10031535. doi:10.1103/physrevlett.54.502. 
  50. ^ Schwarz, J. H. Physical states and pomeron poles in the dual pion model. Nuclear Physics B. 1972, 46 (1): 61–74. Bibcode:1972NuPhB..46...61S. doi:10.1016/0550-3213(72)90201-5. 
  51. ^ Candelas, P.; Horowitz, G.; Strominger, A.; Witten, E. Vacuum configurations for superstrings. Nuclear Physics B. 1985, 258: 46–74. Bibcode:1985NuPhB.258...46C. doi:10.1016/0550-3213(85)90602-9. 
  52. ^ Rickles 2014, p. 89 n. 44.
  53. ^ 53.0 53.1 Green, M. B., Schwarz, J. H. (1982). "Supersymmetrical string theories." Physics Letters B, 109, 444–448 (this paper classified the consistent ten-dimensional superstring theories and gave them the names Type I, Type IIA, and Type IIB).
  54. ^ This was demonstrated in Nahm, Werner, "Supersymmetries and their representations". Nuclear Physics B 135 no 1 (1978) pp 149-166, doi:10.1016/0550-3213(78)90218-3页面存档备份,存于互联网档案馆
  55. ^ E. Bergshoeff, E. Sezgin, P. K. Townsend, "Supermembranes and Eleven-Dimensional Supergravity," Phys. Lett. B 189: 75 (1987).
  56. ^ It was Edward Witten who observed that the theory must be an 11-dimensional one in Witten, Edward. String theory dynamics in various dimensions. Nuclear Physics B. 1995, 443 (1): 85–126. Bibcode:1995NuPhB.443...85W. S2CID 16790997. arXiv:hep-th/9503124 . doi:10.1016/0550-3213(95)00158-O. 
  57. ^ Duff, Michael. The theory formerly known as strings. Scientific American. 1998, 278 (2): 64–9. Bibcode:1998SciAm.278b..64D. doi:10.1038/scientificamerican0298-64. 
  58. ^ When Witten named it M-theory, he did not specify what the "M" stood for, presumably because he did not feel he had the right to name a theory he had not been able to fully describe. The "M" sometimes is said to stand for Mystery, or Magic, or Mother. More serious suggestions include Matrix or Membrane. Sheldon Glashow has noted that the "M" might be an upside down "W", standing for Witten. Others have suggested that the "M" in M-theory should stand for Missing, Monstrous or even Murky. According to Witten himself, as quoted in the PBS documentary页面存档备份,存于互联网档案馆) based on Brian Greene's The Elegant Universe, the "M" in M-theory stands for "magic, mystery, or matrix according to taste."
  59. ^ Rickles 2014, p. 208 n. 2.
  60. ^ Polchinski, J. Dirichlet branes and Ramond-Ramond charges. Physical Review D. 1995, 50 (10): R6041–R6045. Bibcode:1995PhRvL..75.4724P. PMID 10059981. S2CID 4671529. arXiv:hep-th/9510017 . doi:10.1103/PhysRevLett.75.4724. 
  61. ^ Rickles 2014, p. 212.
  62. ^ Maldacena, Juan. The Large N limit of superconformal field theories and supergravity. Advances in Theoretical and Mathematical Physics. 1998, 2 (4): 231–252. Bibcode:1998AdTMP...2..231M. arXiv:hep-th/9711200 . doi:10.4310/ATMP.1998.V2.N2.A1. 
  63. ^ Rickles 2014, p. 207.
  64. ^ Rickles 2014, p. 222.
  65. ^ Maldacena, Juan. The Illusion of Gravity (PDF). Scientific American. 2005, 293 (5): 56–63. Bibcode:2005SciAm.293e..56M. PMID 16318027. doi:10.1038/scientificamerican1105-56. (原始内容 (PDF)存档于2013-11-10).  (p. 63.)
  66. ^ Douglas, Michael R., "The statistics of string / M theory vacua", JHEP 0305, 46 (2003). arXiv:hep-th/0303194
  67. ^ The most commonly quoted number is of the order 10500. See: Ashok S., Douglas, M., "Counting flux vacua", JHEP 0401, 060 (2004).
  68. ^ Rickles 2014, pp. 230–5 and 236 n. 63.
  69. ^ Kachru, Shamit; Kallosh, Renata; Linde, Andrei; Trivedi, Sandip P. de Sitter Vacua in String Theory. Physical Review D. 2003, 68 (4): 046005. Bibcode:2003PhRvD..68d6005K. S2CID 119482182. arXiv:hep-th/0301240 . doi:10.1103/PhysRevD.68.046005. 

进一步阅读

  • Paul Frampton. Dual Resonance Models. Frontiers in Physics, W. A. Benjamin. 1974. ISBN 978-0-8053-2581-2. 
  • Joel A. Shapiro. Reminiscence on the Birth of String Theory. 2007. arXiv:0711.3448  [hep-th]. 
  • John H. Schwarz. The Early History of String Theory and Supersymmetry. 2012. arXiv:1201.0981  [physics.hist-ph]. 
  • Andrea Cappelli; Elena Castellani; Filippo Colomo; Paolo Di Vecchia. The Birth of String Theory. Cambridge University Press. 2012. ISBN 978-0-521-19790-8.