本条目存在以下问题,请协助 改善本条目或在 讨论页针对议题发表看法。
此条目内容疑欠准确,有待查证。 (2019年7月8日) 请在讨论页讨论问题所在及加以改善,若此条目仍有争议及准确度欠佳,会被提出存废讨论。 |
此条目没有列出任何参考或来源。 (2018年8月20日) 维基百科所有的内容都应该可供查证。请协助补充可靠来源以改善这篇条目。无法查证的内容可能会因为异议提出而移除。 |
|
命名实体识别(英语:Named Entity Recognition,简称NER),又称作专名识别、命名实体,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等,以及时间、数量、货币、比例数值等文字。指的是可以用专有名词(名称)标识的事物,一个命名实体一般代表唯一一个具体事物个体,包括人名、地名等。
NER属于从非结构化文本中分类和定位命名实体感情的子任务,其过程是从是非结构化文本表达式中产生专有名词标注信息的命名实体表达式,目前NER有两个显著的问题,即识别和分类。例如,“奥巴马是美国总统”的“奥巴马”和“美国”都代表一个具体事物,因此都是命名实体。而“总统”不代表一个具体事物,因此不是命名实体。
参考资料