霍夫丁不等式(英语:Hoeffding's inequality)适用于有界的随机变量。设有两两独立的一系列随机变量
。假设对所有的
,
都是几乎有界的变量,即满足:
![{\displaystyle \mathbb {P} (X_{i}\in [a_{i},b_{i}])=1.\!}](/media/math_img/830/2e6f13669eacf3e303df1837041e91ce704f7345.svg)
那么这n个随机变量的经验期望:

满足以下的不等式[1]:
![{\displaystyle \mathbb {P} ({\overline {X}}-\mathbb {E} [{\overline {X}}]\geq t)\leq \exp \left(-{\frac {2t^{2}n^{2}}{\sum _{i=1}^{n}(b_{i}-a_{i})^{2}}}\right),\!}](/media/math_img/830/2384a4ef64dbf81cdfa5fe6f517ef35494a6b022.svg)
![{\displaystyle \mathbb {P} (|{\overline {X}}-\mathbb {E} [{\overline {X}}]|\geq t)\leq 2\exp \left(-{\frac {2t^{2}n^{2}}{\sum _{i=1}^{n}(b_{i}-a_{i})^{2}}}\right),\!}](/media/math_img/830/51f4eeb59eab8345db944e6f7a2c91fd8a6146c4.svg)
参考文献
- ^ Wassily Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association 58 (301): 13–30, March 1963. (JSTOR)(英文)