福克-普朗克方程

福克-普朗克方程Fokker–Planck equation)描述粒子在势能场中受到随机力后,随时间演化的位置或是速度分布函数 [1] 。此方程以荷兰物理学家阿德里安·福克[2]马克斯·普朗克[3]的姓氏来命名。

存在拖拽和扩散项时,福克-普朗克方程的一个一维解。初始状态为远离零速度的δ函数,随机冲击使其分布逐渐变宽

一维 x方向上,福克-普朗克方程有两个参数,一是拖拽参数 D1(x,t),另一是扩散 D2(x,t)

维空间中的福克-普朗克方程是

是第维度的位置,此时 为拖拽向量扩散张量

其他

 

若V=0,则福克-普朗克方程成为布朗运动

 

与随机方程的关系

福克-普朗克方程可以用来计算随机过程随机微分方程分布函数的解。

一个受随机力的经典粒子,经由朗之万方程可以得到福克-普朗克方程。另外再借由福克-普朗克方程也可推导薛定谔方程[4]

参考资料

  1. ^ Leo P. Kadanoff. Statistical Physics: statics, dynamics and renormalization. World Scientific. 2000. ISBN 9810237642. 
  2. ^ A. D. Fokker, Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld, Ann. Phys. 348 (4. Folge 43), 810–820 (1914).
  3. ^ M. Planck, Sitz.ber. Preuß. Akad. (1917).
  4. ^ Edward Nelson ,"Derivation of the Schrödinger Equation from Newtonian Mechanics",Phys. Rev. 150, 1079–1085 (1966)

相关条目

  • 马克斯·普朗克阿德里安·福克
  • 朗之万方程(Langevin equation)
  • Ornstein–Uhlenbeck过程
  • 泛函积分
  • 薛定谔方程威克转动的福克-普朗克方程

延伸阅读

  • Hannes Risken, "The Fokker–Planck equation : Methods of Solutions and Applications", 2nd edition, Springer Series in Synergetics, Springer, 互联网档案馆
  • Scott. Applied Stochastic Processes.

外部链接