卡马萨-霍尔姆方程
卡马萨-霍尔姆方程(Camassa Holm equation)是流体力学中的一个非线性偏微分方程
1993年卡马萨和霍尔姆以此偏微分方程模拟浅水波[1],
其中κ是大于0的参数。
行波解
卡马萨-霍尔姆方程有行波解[2]:
参数:c = 1, x0 = 1, kappa = .3 代人得:
Maple TWSolution
Maple软件包TWSolution可提供多种行波解[3]。
- sech 展开
- exp 展开
- csch 展开
- sec 展开
- JacobiSN 展开
参考文献
- ^ Camassa & Holm 1993
- ^ Beals, Sattinger & Szmigielski 1999
- ^ Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Page 27-35
- Beals, Richard; Sattinger, David H.; Szmigielski, Jacek, Multi-peakons and a theorem of Stieltjes, Inverse Problems 15 (1), 1999, 15 (1): L1–L4, Bibcode:1999InvPr..15L...1B, arXiv:solv-int/9903011 , doi:10.1088/0266-5611/15/1/001
- Boldea, Costin-Radu, A generalization for peakon's solitary wave and Camassa–Holm equation, General Mathematics 5 (1–4), 1995, 5 (1–4): 33–42 [2013-12-30], (原始内容存档于2020-07-06)
- Boutet de Monvel, Anne; Kostenko, Aleksey; Shepelsky, Dmitry; Teschl, Gerald, Long-Time Asymptotics for the Camassa–Holm Equation, SIAM J. Math. Anal. 41 (4), 2009, 41 (4): 1559–1588, arXiv:0902.0391 , doi:10.1137/090748500
- Bressan, Alberto; Constantin, Adrian, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal. 183 (2), 2007a, 183 (2): 215–239 [2013-12-30], Bibcode:2007ArRMA.183..215B, doi:10.1007/s00205-006-0010-z, (原始内容存档于2020-08-04)
- Bressan, Alberto; Constantin, Adrian, Global dissipative solutions of the Camassa–Holm equation, Anal. Appl. 5, 2007b, 5: 1–27 [2013-12-30], doi:10.1142/S0219530507000857, (原始内容存档于2016-03-05)
- Camassa, Roberto; Holm, Darryl D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (11), 1993, 71 (11): 1661–1664, Bibcode:1993PhRvL..71.1661C, arXiv:patt-sol/9305002 , doi:10.1103/PhysRevLett.71.1661
- Constantin, Adrian, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Annales de l'Institut Fourier 50 (2), 2000, 50 (2): 321–362 [2013-12-30], (原始内容存档于2016-03-03)
- Constantin, Adrian, On the scattering problem for the Camassa–Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2008), 2001, 457 (2008): 953–970, Bibcode:2001RSPSA.457..953C, doi:10.1098/rspa.2000.0701
- Constantin, Adrian; Escher, Joachim, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181 (2), 1998b, 181 (2): 229–243, doi:10.1007/BF02392586
- Constantin, Adrian; Escher, Joachim, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z. 233 (1), 2000, 233 (1): 75–91, doi:10.1007/PL00004793
- Constantin, Adrian; McKean, Henry P., A shallow water equation on the circle, Commun. Pure Appl. Math. 52 (8), 1999, 52 (8): 949–982, doi:10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
- Constantin, Adrian; Strauss, Walter A., Stability of peakons, Comm. Pure Appl. Math., 2000, 53 (5): 603–610, doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
- Constantin, Adrian; Strauss, Walter A., Stability of the Camassa–Holm solitons, J. Nonlinear Sci., 2002, 12 (4): 415–422, Bibcode:2002JNS....12..415C, doi:10.1007/s00332-002-0517-x
- Constantin, Adrian; Gerdjikov, Vladimir S.; Ivanov, Rossen I., Inverse scattering transform for the Camassa–Holm equation, Inverse Problems 22 (6), 2006, 22 (6): 2197–2207, Bibcode:2006InvPr..22.2197C, arXiv:nlin/0603019 , doi:10.1088/0266-5611/22/6/017
- Eckhardt, Jonathan; Teschl, Gerald, On the isospectral problem of the dispersionless Camassa-Holm equation, Adv. Math. 235 (1), 2013, 235 (1): 469–495, arXiv:1205.5831 , doi:10.1016/j.aim.2012.12.006
- Loubet, Enrique, About the explicit characterization of Hamiltonians of the Camassa–Holm hierarchy, J. Nonlinear Math. Phys. 12 (1), 2005, 12 (1): 135–143, Bibcode:2005JNMP...12..135L, doi:10.2991/jnmp.2005.12.1.11
- McKean, Henry P., Fredholm determinants and the Camassa–Holm hierarchy, Comm. Pure Appl. Math. 56 (5), 2003a, 56 (5): 638–680, doi:10.1002/cpa.10069
- McKean, Henry P., Breakdown of the Camassa–Holm equation, Comm. Pure Appl. Math. 57 (3), 2004, 57 (3): 416–418, doi:10.1002/cpa.20003
- Parker, Allen, On the Camassa–Holm equation and a direct method of solution. III. N-soliton solutions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2064), 2005b, 461 (2064): 3893–3911, Bibcode:2005RSPSA.461.3893P, doi:10.1098/rspa.2005.1537
- Liao, S.J., Do peaked solitary water waves indeed exist?, Communications in Nonlinear Science and Numerical Simulation, 2013, doi:10.1016/j.cnsns.2013.09.042
- *谷超豪 《孤立子理论中的达布变换及其几何应用》 上海科学技术出版社
- *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年
- 李志斌编著 《非线性数学物理方程的行波解》 科学出版社
- 王东明著 《消去法及其应用》 科学出版社 2002
- *何青 王丽芬编著 《Maple 教程》 科学出版社 2010 ISBN 9787030177445
- Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
- Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
- Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
- Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
- Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
- Dongming Wang, Elimination Practice,Imperial College Press 2004
- David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
- George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759