齐次蒙日-安培方程(Homogeneous Monge-Ampère equation)是一个常见于黎曼几何的非线性偏微分方程,同时也是卡拉比-丘流形证明时曾用的工具。[1]
广义而言,定义两个独立变量x,y,以及一个非独立变量u,蒙日-安培方程可以表述为:
这里的A,B,C,D,E为一阶变量x,y,ux和uy唯一的非独立函数。
解析解
根据齐次蒙日-安培方程:
其对应的解析解为:
-
-
-
-
-
-
-
-
-
-
行波图
Homogeneous Monge-Ampere equation plot
|
Homogeneous Monge-Ampere equation plot
|
Homogeneous Monge-Ampere equation plot
|
Homogeneous Monge-Ampere equation plot
|
Homogeneous Monge-Ampere equation plot
|
Homogeneous Monge-Ampere equation plot
|
Homogeneous Monge-Ampere equation plot
|
Homogeneous Monge-Ampere equation plot
|
Homogeneous Monge-Ampere equation plot
|
Homogeneous Monge-Ampere equation plot
|
Homogeneous Monge-Ampere equation plot
|
Homogeneous Monge-Ampere equation plot
|
参考文献
- ^ Andrei D. Polyanin,Valentin F. Zaitsev, HANDBOOK OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS, SECOND EDITION p775-776 CRC PRESS
- *谷超豪 《孤立子理论中的达布变换及其几何应用》 上海科学技术出版社
- *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年
- 李志斌编著 《非线性数学物理方程的行波解》 科学出版社
- 王东明著 《消去法及其应用》 科学出版社 2002
- *何青 王丽芬编著 《Maple 教程》 科学出版社 2010 ISBN 9787030177445
- Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
- Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
- Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
- Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
- Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
- Dongming Wang, Elimination Practice,Imperial College Press 2004
- David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
- George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759