流 (数学)

数学中, 一个用数学方式形式化了“取决于时间的变化”的一般想法,这经常出现在工程学, 物理学常微分方程的研究中。非正式地说,如果 是某一系统的坐标连续表现为一个 t函数,那么 是一个流。更形式地说,流是单参数群在一个集合上的群作用

向量流的概念,即由一个向量场确定的流,出现于微分拓扑黎曼流形李群诸多领域。向量流的特例包括测地流哈密顿流里奇流平均曲率流以及 Anosov 流

形式化定义

集合   上的一个流是    上的群作用。更准确地,流是一个函数  ,满足   且和单参数群保持一致:

 

对所有   属于   

集合   称为   作用下的轨道

当空间   有额外的结构(比如   是一个拓扑空间 )时,流经常要求连续甚至可微

在许多领域,包括在工程学、物理和常微分方程研究中一般用一个记号明确的表明流。从而

 

写成  ,这样我们可以说“变量 x 取决于时间 t”。事实上,在记号上,有严格的等价关系: 。类似地

 

写成  ,等等。

例子

流最常见的例子是描述自治常微分方程的解,当方程的解存在且惟一时

 

可作为初始条件   的函数。这就是,如果以上方程有惟一的解   对任何  ,那么  定义了一个流。

参考文献