内维尔Θ函数内维尔Θ函数(Neville Theta functions)共有四个,定义如下: N e v i l l e C ( z , m ) = ( 2 ) ∗ q ( m ) 1 / 4 ∗ ( ∑ k = 0 ∞ ( q ( m ) ( k ∗ ( k + 1 ) ) ∗ c o s ( ( 1 / 2 ) ∗ ( 2 ∗ k + 1 ) ∗ π ∗ z / K ( m ) ) ) ) ( K ( m ) ) ∗ m 1 / 4 {\displaystyle NevilleC(z,m)={\frac {{\sqrt {(}}2)*q(m)^{1/4}*(\sum _{k=0}^{\infty }(q(m)^{(}k*(k+1))*cos((1/2)*(2*k+1)*\pi *z/K(m))))}{{\sqrt {(}}K(m))*m^{1/4}}}} N e v i l l e T h e t a C ( z , m ) = ( 2 ∗ π ) ∗ q ( m ) 1 / 4 ∗ ( ∑ k = 0 ∞ ( q ( m ) k ∗ ( k + 1 ) ∗ c o s ( ( 1 / 2 ) ∗ ( 2 ∗ k + 1 ) ∗ π ∗ z / K ( m ) ) ) ) ( K ( m ) ) ∗ m 1 / 4 {\displaystyle NevilleThetaC(z,m)={\frac {{\sqrt {(}}2*\pi )*q(m)^{1/4}*(\sum _{k=0}^{\infty }(q(m)^{k*(k+1)}*cos((1/2)*(2*k+1)*\pi *z/K(m))))}{{\sqrt {(}}K(m))*m^{1/4}}}} N e v i l l e T h e t a D ( z , m ) = ( ( 1 / 2 ) ∗ π ) ∗ ( 1 + 2 ∗ ( ∑ k = 1 ∞ ( q ( m ) ( k 2 ) ∗ c o s ( k ∗ π ∗ z / K ( m ) ) ) ) ) ( K ( m ) ) {\displaystyle NevilleThetaD(z,m)={\frac {{\sqrt {(}}(1/2)*\pi )*(1+2*(\sum _{k=1}^{\infty }(q(m)^{(}k^{2})*cos(k*\pi *z/K(m)))))}{{\sqrt {(}}K(m))}}} N e v i l l e T h e t a N ( z , m ) = ( π ) ∗ ( 1 + 2 ∗ ( ∑ k = 1 ∞ ( ( − 1 ) k ∗ q ( m ) k 2 ∗ c o s ( k ∗ π ∗ z / K ( m ) ) ) ) ) ( 2 ) ∗ ( 1 − m ) ( 1 / 4 ) ∗ K ( m ) {\displaystyle NevilleThetaN(z,m)={\frac {{\sqrt {(}}\pi )*(1+2*(\sum _{k=1}^{\infty }((-1)^{k}*q(m)^{k^{2}}*cos(k*\pi *z/K(m)))))}{{\sqrt {(}}2)*(1-m)^{(}1/4)*{\sqrt {K(m)}}}}} {\displaystyle } 其中 K ( m ) = E l l i p t i c K ( ( m ) ) {\displaystyle K(m)=EllipticK({\sqrt {(}}m))} K ′ ( m ) = E l l i p t i c K ( ( 1 − m ) ) {\displaystyle K'(m)=EllipticK({\sqrt {(}}1-m))} q ( m ) = e − π ∗ K ( m ) K ′ ( m ) {\displaystyle q(m)=e^{\frac {-\pi *K(m)}{K'(m)}}} 尼维尔Θ函数也可以通过雅可比Θ函数的傅里叶级数来定义,并使得尼维尔Θ函数可以进一步被用于定义相对应的雅可比椭圆函数。 θ c ( z , m ) = 2 π q ( m ) 1 / 4 m 1 / 4 K ( m ) ∑ k = 0 ∞ ( q ( m ) ) k ( k + 1 ) cos ( ( 2 k + 1 ) π z 2 K ( m ) ) {\displaystyle \theta _{c}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(q(m))^{k(k+1)}\cos \left({\frac {(2k+1)\pi z}{2K(m)}}\right)} θ d ( z , m ) = 2 π 2 K ( m ) ( 1 + 2 ∑ k = 1 ∞ ( q ( m ) ) k 2 cos ( π z k K ( m ) ) ) {\displaystyle \theta _{d}(z,m)={\frac {\sqrt {2\pi }}{2{\sqrt {K(m)}}}}\,\,\left(1+2\,\sum _{k=1}^{\infty }(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)} θ n ( z , m ) = 2 π 2 ( 1 − m ) 1 / 4 K ( m ) ( 1 + 2 ∑ k = 1 ∞ ( − 1 ) k ( q ( m ) ) k 2 cos ( π z k K ( m ) ) ) {\displaystyle \theta _{n}(z,m)={\frac {\sqrt {2\pi }}{2(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\left(1+2\sum _{k=1}^{\infty }(-1)^{k}(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)} θ s ( z , m ) = 2 π q ( m ) 1 / 4 m 1 / 4 ( 1 − m ) 1 / 4 K ( m ) ∑ k = 0 ∞ ( − 1 ) k ( q ( m ) ) k ( k + 1 ) sin ( ( 2 k + 1 ) π z 2 K ( m ) ) {\displaystyle \theta _{s}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(-1)^{k}(q(m))^{k(k+1)}\sin \left({\frac {(2k+1)\pi z}{2K(m)}}\right)} 这种定义涉及到第一类完全椭圆积分。 目录 1 例子 2 对称关系 3 级数展开 4 与其他特殊函数关系 5 平面图 6 复数3维图 7 外部链接 8 参考文献 例子 利用Maple,将z=2.5,m=3 代人上列公式,即得: 与wolfram math结果相当[1] : N e v i l l e T h e t a C ( 2.5 , .3 ) = − .65900466676738154967 {\displaystyle NevilleThetaC(2.5,.3)=-.65900466676738154967} N e v i l l e T h e t a D ( 2.5 , .3 ) = 0.95182196661267561994 {\displaystyle NevilleThetaD(2.5,.3)=0.95182196661267561994} N e v i l l e T h e t a N ( 2.5 , .3 ) = 1.0526693354651613637 {\displaystyle NevilleThetaN(2.5,.3)=1.0526693354651613637} N e v i l l e T h e t a S ( 2.5 , .3 ) = 0.82086879524530400536 {\displaystyle NevilleThetaS(2.5,.3)=0.82086879524530400536} 对称关系 N e v i l l e T h e t a C ( z , m ) = N e v i l l e T h e t a C ( − z , m ) {\displaystyle NevilleThetaC(z,m)=NevilleThetaC(-z,m)} N e v i l l e T h e t a D ( z , m ) = N e v i l l e T h e t a D ( − z , m ) {\displaystyle NevilleThetaD(z,m)=NevilleThetaD(-z,m)} N e v i l l e T h e t a N ( z , m ) = N e v i l l e T h e t a N ( − z , m ) {\displaystyle NevilleThetaN(z,m)=NevilleThetaN(-z,m)} N e v i l l e T h e t a S ( z , m ) = − N e v i l l e T h e t a S ( − z , m ) {\displaystyle NevilleThetaS(z,m)=-NevilleThetaS(-z,m)} 级数展开 N e v i l l e T h e t a C ( z , 1 / 2 ) = .9998 − .3641 ∗ z 2 + 0.2466 e − 1 ∗ z 4 − 0.1210 e − 2 ∗ z 6 + 0.8707 e − 4 ∗ z 8 + O ( z 1 0 ) {\displaystyle NevilleThetaC(z,1/2)=.9998-.3641*z^{2}+0.2466e-1*z^{4}-0.1210e-2*z^{6}+0.8707e-4*z^{8}+O(z^{1}0)} N e v i l l e T h e t a D ( z , 1 / 2 ) = .9995 − .1143 ∗ z 2 + 0.2736 e − 1 ∗ z 4 − 0.2629 e − 2 ∗ z 6 + 0.1368 e − 3 ∗ z 8 + O ( z 1 0 ) {\displaystyle NevilleThetaD(z,1/2)=.9995-.1143*z^{2}+0.2736e-1*z^{4}-0.2629e-2*z^{6}+0.1368e-3*z^{8}+O(z^{1}0)} N e v i l l e T h e t a N ( z , 1 / 2 ) = 1.000 + .1358 ∗ z 2 − 0.3244 e − 1 ∗ z 4 + 0.3093 e − 2 ∗ z 6 − 0.1561 e − 3 ∗ z 8 + O ( z 1 0 ) {\displaystyle NevilleThetaN(z,1/2)=1.000+.1358*z^{2}-0.3244e-1*z^{4}+0.3093e-2*z^{6}-0.1561e-3*z^{8}+O(z^{1}0)} N e v i l l e T h e t a S ( z , 1 / 2 ) = 1.000 ∗ z − .1142 ∗ z 3 + 0.2358 e − 2 ∗ z 5 + 0.2276 e − 3 ∗ z 7 − 0.2630 e − 4 ∗ z 9 + O ( z 1 1 ) {\displaystyle NevilleThetaS(z,1/2)=1.000*z-.1142*z^{3}+0.2358e-2*z^{5}+0.2276e-3*z^{7}-0.2630e-4*z^{9}+O(z^{1}1)} 与其他特殊函数关系 N e v i l l e T h e t a C ( z , m ) = 2 π e − π E l l i p t i c K ( 1 − m ) E l l i p t i c K ( m ) 4 ∑ k = 0 ∞ ( e − π E l l i p t i c K ( 1 − m ) E l l i p t i c K ( m ) ) k ( k + 1 ) ( 1 / 2 ( 2 k + 1 ) π z E l l i p t i c K ( m ) + 1 / 2 π ) M ( 1 , 2 , 2 i ( 1 / 2 ( 2 k + 1 ) π z E l l i p t i c K ( m ) + 1 / 2 π ) ) ( e i ( 1 / 2 ( 2 k + 1 ) π z E l l i p t i c K ( m ) + 1 / 2 π ) ) − 1 1 E l l i p t i c K ( m ) 1 m 4 {\displaystyle NevilleThetaC(z,m)={\sqrt {2}}{\sqrt {\pi }}{\sqrt[{4}]{{\rm {e}}^{-{\frac {\pi \,{\it {EllipticK}}\left({\sqrt {1-m}}\right)}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}}}}\sum _{k=0}^{\infty }\left({{\rm {e}}^{-{\frac {\pi \,{\it {EllipticK}}\left({\sqrt {1-m}}\right)}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}}}\right)^{k\left(k+1\right)}\left(1/2\,{\frac {\left(2\,k+1\right)\pi \,z}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}+1/2\,\pi \right){{\rm {M}}\left(1,\,2,\,2\,i\left(1/2\,{\frac {\left(2\,k+1\right)\pi \,z}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}+1/2\,\pi \right)\right)}\left({{\rm {e}}^{i\left(1/2\,{\frac {\left(2\,k+1\right)\pi \,z}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}+1/2\,\pi \right)}}\right)^{-1}{\frac {1}{\sqrt {{\it {EllipticK}}\left({\sqrt {m}}\right)}}}{\frac {1}{\sqrt[{4}]{m}}}} N e v i l l e T h e t a D ( z , n ) = 1 / 2 2 π ( 1 + 2 ∑ k = 1 ∞ ( e − π E l l i p t i c K ( 1 − m ) E l l i p t i c K ( m ) ) k 2 ( k π z E l l i p t i c K ( m ) + 1 / 2 π ) M ( 1 , 2 , 2 i ( k π z E l l i p t i c K ( m ) + 1 / 2 π ) ) ( e i ( k π z E l l i p t i c K ( m ) + 1 / 2 π ) ) − 1 ) 1 E l l i p t i c K ( m ) {\displaystyle NevilleThetaD(z,n)=1/2\,{\sqrt {2}}{\sqrt {\pi }}\left(1+2\,\sum _{k=1}^{\infty }\left({{\rm {e}}^{-{\frac {\pi \,{\it {EllipticK}}\left({\sqrt {1-m}}\right)}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}}}\right)^{{k}^{2}}\left({\frac {k\pi \,z}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}+1/2\,\pi \right){{\rm {M}}\left(1,\,2,\,2\,i\left({\frac {k\pi \,z}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}+1/2\,\pi \right)\right)}\left({{\rm {e}}^{i\left({\frac {k\pi \,z}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}+1/2\,\pi \right)}}\right)^{-1}\right){\frac {1}{\sqrt {{\it {EllipticK}}\left({\sqrt {m}}\right)}}}} N e v i l l e T h e t a N ( z , m ) = 1 / 2 2 π ( 1 + 2 ∑ k = 1 ∞ ( − 1 ) k ( e − π E l l i p t i c K ( 1 − m ) E l l i p t i c K ( m ) ) k 2 ( k π z E l l i p t i c K ( m ) + 1 / 2 π ) M ( 1 , 2 , 2 i ( k π z E l l i p t i c K ( m ) + 1 / 2 π ) ) ( e i ( k π z E l l i p t i c K ( m ) + 1 / 2 π ) ) − 1 ) 1 1 − m 4 1 E l l i p t i c K ( m ) {\displaystyle NevilleThetaN(z,m)=1/2\,{\sqrt {2}}{\sqrt {\pi }}\left(1+2\,\sum _{k=1}^{\infty }\left(-1\right)^{k}\left({{\rm {e}}^{-{\frac {\pi \,{\it {EllipticK}}\left({\sqrt {1-m}}\right)}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}}}\right)^{{k}^{2}}\left({\frac {k\pi \,z}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}+1/2\,\pi \right){{\rm {M}}\left(1,\,2,\,2\,i\left({\frac {k\pi \,z}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}+1/2\,\pi \right)\right)}\left({{\rm {e}}^{i\left({\frac {k\pi \,z}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}+1/2\,\pi \right)}}\right)^{-1}\right){\frac {1}{\sqrt[{4}]{1-m}}}{\frac {1}{\sqrt {{\it {EllipticK}}\left({\sqrt {m}}\right)}}}} N e v i l l e T h e t a S ( z , m ) = 2 π e − π E l l i p t i c K ( 1 − m ) E l l i p t i c K ( m ) 4 ∑ k = 0 ∞ 1 / 2 ( − 1 ) k ( e − π E l l i p t i c K ( 1 − m ) E l l i p t i c K ( m ) ) k ( k + 1 ) ( 2 k + 1 ) π z M ( 1 , 2 , i π z ( 2 k + 1 ) E l l i p t i c K ( m ) ) ( E l l i p t i c K ( m ) ) − 1 ( e 1 / 2 i π z ( 2 k + 1 ) E l l i p t i c K ( m ) ) − 1 1 1 − m 4 1 m 4 1 E l l i p t i c K ( m ) {\displaystyle NevilleThetaS(z,m)={\sqrt {2}}{\sqrt {\pi }}{\sqrt[{4}]{{\rm {e}}^{-{\frac {\pi \,{\it {EllipticK}}\left({\sqrt {1-m}}\right)}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}}}}\sum _{k=0}^{\infty }1/2\,\left(-1\right)^{k}\left({{\rm {e}}^{-{\frac {\pi \,{\it {EllipticK}}\left({\sqrt {1-m}}\right)}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}}}\right)^{k\left(k+1\right)}\left(2\,k+1\right)\pi \,z{{\rm {M}}\left(1,\,2,\,{\frac {i\pi \,z\left(2\,k+1\right)}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}\right)}\left({\it {EllipticK}}\left({\sqrt {m}}\right)\right)^{-1}\left({{\rm {e}}^{\frac {1/2\,i\pi \,z\left(2\,k+1\right)}{{\it {EllipticK}}\left({\sqrt {m}}\right)}}}\right)^{-1}{\frac {1}{\sqrt[{4}]{1-m}}}{\frac {1}{\sqrt[{4}]{m}}}{\frac {1}{\sqrt {{\it {EllipticK}}\left({\sqrt {m}}\right)}}}} 平面图 Neville ThetaC function Maple plot Neville ThetaD function Maple plot Neville ThetaD function Maple plot Neville ThetaS function Maple plot 复数3维图 外部链接 Wolfram Mathworld, Neville Theta functions (页面存档备份,存于互联网档案馆)参考文献 Milton Abramowitz and Irene Stegun,Handbook of Mathematical Functions, p578, National Bureau of Standards, 1972.^ wolfram math 计算结果. [2015-03-09]. (原始内容存档于2020-06-14).