克拉夫楚克多项式

克拉夫楚克多项式超几何函数定义如下

Kravchuk polynomials animation
Kravchuk polynomials animation

=


克拉夫楚克多项式的头几项是

极限关系

量子Q克拉夫楚克多项式克拉夫楚克多项式

 

双Q克拉夫楚克多项式 ,并令q→1,即得克拉夫楚克多项式

参考文献

  • Kravchuk, M., Sur une généralisation des polynomes d'Hermite., Comptes Rendus Mathematique, 1929, 189: 620–622, JFM 55.0799.01 (法语) 
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F., Hahn Class: Definitions, Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (编), NIST Handbook of Mathematical Functions, Cambridge University Press, 2010, ISBN 978-0521192255, MR2723248 
  • Nikiforov, A. F.; Suslov, S. K.; Uvarov, V. B., Classical Orthogonal Polynomials of a Discrete Variable, Springer Series in Computational Physics, Berlin: Springer-Verlag, 1991, ISBN 3-540-51123-7, MR 1149380 .
  • Levenshtein, Vladimir I., Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces, IEEE Transactions on Information Theory, 1995, 41 (5): 1303–1321, MR 1366326, doi:10.1109/18.412678 .
  • F. J. MacWilliams; N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1977, ISBN 0-444-85193-3