亥姆霍兹分解

物理学数学中的向量分析中,亥姆霍兹定理[1][2] 或称向量分析基本定理[3][4][5][6][7][8][9] 指出对于任意足够光滑、快速衰减的三维向量场可分解为一个无旋向量场和一个螺线向量场的和,这个过程被称作亥姆霍兹分解。此定理以物理学家赫尔曼·冯·亥姆霍兹为名。[10]

这意味着任何矢量场 F,都可以视为两个势场(标势 φ矢势 A)之和。

定理内容

假定 F 为定义在有界区域 VR3 里的二次连续可微向量场,且 SV 的包围面,则 F 可被分解成无旋度及无散度两部分:[11]

 

其中

 


 


如果 V = R3,且 F 在无穷远处消失的比   快,则标势及矢势的第二项为零,也就是说 [12]

 


 

推导

假定我们有一个向量函数 ,且其旋度 及散度 已知。利用狄拉克δ函数可将函数改写成

 
 

利用以下等式

 

可得

 
 

注意到 ,我们可将上式改写成

 


利用以下二等式,

 
 

可得

 

利用散度定理,方程可改写成

 
 

定义

 
 

所以

 

利用傅里叶变换做推导

(疑似有错误) 将F改写成傅里叶变换的形式:

 

标量场的傅里叶变换是一个标量场,向量场的傅里叶变换是一个维度相同的向量场。 现在考虑以下标量场及向量场:

 

所以

 
 

注释

  1. ^ On Helmholtz's Theorem in Finite Regions. By Jean Bladel. Midwestern Universities Research Association, 1958.
  2. ^ Hermann von Helmholtz. Clarendon Press, 1906. By Leo Koenigsberger. p357
  3. ^ An Elementary Course in the Integral Calculus. By Daniel Alexander Murray. American Book Company, 1898. p8.
  4. ^ J. W. Gibbs & Edwin Bidwell Wilson (1901) Vector Analysis, page 237, link from Internet Archive
  5. ^ Electromagnetic theory, Volume 1. By Oliver Heaviside. "The Electrician" printing and publishing company, limited, 1893.
  6. ^ Elements of the differential calculus. By Wesley Stoker Barker Woolhouse. Weale, 1854.
  7. ^ An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By William Woolsey Johnson. John Wiley & Sons, 1881.
    参见:流数法
  8. ^ Vector Calculus: With Applications to Physics. By James Byrnie Shaw. D. Van Nostrand, 1922. p205.
    参见:格林公式
  9. ^ A Treatise on the Integral Calculus, Volume 2. By Joseph Edwards. Chelsea Publishing Company, 1922.
  10. ^ 参见:
  11. ^ Helmholtz' Theorem (PDF). University of Vermont. [2014-08-14]. (原始内容 (PDF)存档于2012-08-13). 
  12. ^ David J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, 1999, p. 556.

参考文献

一般参考文献

  • George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists, 4th edition, Academic Press: San Diego (1995) pp. 92–93
  • George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists International Edition, 6th edition, Academic Press: San Diego (2005) pp. 95–101

弱形式的参考文献

  • C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. "Vector potentials in three dimensional non-smooth domains." Mathematical Methods in the Applied Sciences, 21, 823–864, 1998.
  • R. Dautray and J.-L. Lions. Spectral Theory and Applications, volume 3 of Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, 1990.
  • V. Girault and P.A. Raviart. Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag, 1986.

外部链接