分角定理 分角定理,是平面几何学的一个定理。 B D C D = A B sin ∠ B A D A C sin ∠ C A D {\displaystyle {\frac {BD}{CD}}={\cfrac {AB\sin \angle BAD}{AC\sin \angle CAD}}} [1] 证明 S △ A B D S △ A C D = B D C D {\displaystyle {\frac {S_{\triangle ABD}}{S_{\triangle ACD}}}={\frac {BD}{CD}}} S △ A B D S △ A C D = 1 2 A B ⋅ A D sin ∠ B A D 1 2 A C ⋅ A D sin ∠ C A D = A B sin ∠ B A D A C sin ∠ C A D {\displaystyle {\frac {S_{\triangle ABD}}{S_{\triangle ACD}}}={\cfrac {{\cfrac {1}{2}}AB\cdot AD\sin \angle BAD}{{\cfrac {1}{2}}AC\cdot AD\sin \angle CAD}}={\cfrac {AB\sin \angle BAD}{AC\sin \angle CAD}}} B D C D = A B sin ∠ B A D A C sin ∠ C A D {\displaystyle {\frac {BD}{CD}}={\cfrac {AB\sin \angle BAD}{AC\sin \angle CAD}}} 参见 角平分线定理 张角定理 三弦定理参考资料 ^ 鲍四元. 分角定理——一种广义的“数形结合”. 中学数学杂志. 2010, (10) [2015-09-20]. (原始内容存档于2019-08-03).