如图 分别是 的垂心,重心,外心。
设 为直线 和 外接圆的交点,并连结 。
(1)
是直径, 且 。
又 是垂心, 且 。
, 。
为平行四边形。
->
又 分别是 的中点,
,
(2)
作 边上的中线 连结
设 交 于点
,
,
即 的重心
的垂心 重心 外心 三点共线 直线 即欧拉线
九点圆的圆心也在欧拉线上,且在垂心到外心的线段的中点
如图,H、G、Ω分别是△ABC的垂心、重心、外心,三角形的三边中点I i,三高的垂足Hi,和顶点到垂心的三条线段的中点J i
令HΩ和J1I1的交点为K,∵BΩ=CΩ,BI1=CI1,∴ΩI1⊥BC,又∵AH1⊥BC,∴ΩI1∥AH1。
∵∠GΩI1=∠AHG,∠GAH=∠GI1Ω,∴△AGH∽△GΩI1。∵AG=2GI1,∴AH=2ΩI1,即ΩI1=J1H。
∵ΩI1∥AH1, J1H=ΩI1 ∴J1K=KI1, HK = KΩ。
同理J2K=KI2, J3K=KI3。 可知K为九点圆圆心。
∵点K在HΩ上,HK = KΩ
∴九点圆圆心在欧拉线上,且在垂心到外心的线段的中点。