数学物理

数学物理数学物理学的交叉领域,指应用特定的数学方法来研究物理学的某些部分。对应的数学方法也叫数学物理方法。数学和物理学的发展在历史上一直密不可分,许多数学理论是在物理问题的基础上发展起来的;很多数学方法和工具通常也只在物理学中找到实际应用。不过,也只是互相参考而已,所有没有所谓的一定。[1]

主要内容

  • 微分方程的解算:很多物理问题,比如在经典力学量子力学中求解运动方程,都可以被归结为在一定边界条件下的对微分方程的求解。因此求解微分方程成为数学物理的最重要组成部分。相关的数学工具包括:
  • 的研究(场论):场是现代物理的主要研究对象。电动力学研究电磁场广义相对论研究引力场规范场论研究规范场。对不同的可使用不同的数学工具,包括:
  • 对称性的研究:对称性是物理中的重要概念。它是守恒律的基础,在晶体学量子场论中都有重要应用。对称性由对称群或相关的代数结构描述,研究它的数学工具是:
  • 作用量(action)理论:作用量理论被广泛应用于物理学的各个领域,例如分析力学路径积分。相关的数学工具包括:

参见

参考

  1. ^ Definition from the Journal of Mathematical Physics. 存档副本. [2005-10-14]. (原始内容存档于2006-10-03). 

文献

  • Abraham, Ralph; Marsden, Jerrold E., Foundations of mechanics: a mathematical exposition of classical mechanics with an introduction to the qualitative theory of dynamical systems 2nd, Providence, [RI.]: AMS Chelsea Pub., 2008, ISBN 978-0-8218-4438-0 
  • Arnold, Vladimir I.; Vogtmann, K.; Weinstein, A. (tr.), Mathematical methods of classical mechanics / [Matematicheskie metody klassicheskoĭ mekhaniki] 2nd, New York, [NY.]: Springer-Verlag, 1997, ISBN 0-387-96890-3 
  • Courant, Richard; Hilbert, David, Methods of mathematical physics, New York, [NY.]: Interscience Publishers, 1989 
  • Glimm, James; Jaffe, Arthur, Quantum physics: a functional integral point of view 2nd, New York, [NY.]: Springer-Verlag, 1987, ISBN 0-387-96477-0  (pbk.)
  • Haag, Rudolf, Local quantum physics: fields, particles, algebras 2nd rev. & enl., Berlin, [Germany] ; New York, [NY.]: Springer-Verlag, 1996, ISBN 3-540-61049-9  (softcover)
  • Hawking, Stephen W.; Ellis, George F. R., The large scale structure of space-time, Cambridge, [England]: Cambridge University Press, 1973, ISBN 0-521-20016-4 
  • Kato, Tosio, Perturbation theory for linear operators 2nd repr., Berlin, [Germany]: Springer-Verlag, 1995, ISBN 3-540-58661-X  (This is a reprint of the second (1980) edition of this title.)
  • Margenau, Henry; Murphy, George Moseley, The mathematics of physics and chemistry 2nd repr., Huntington, [NY.]: R. E. Krieger Pub. Co., 1976, ISBN 0-88275-423-8  (This is a reprint of the 1956 second edition.)
  • Morse, Philip McCord; Feshbach, Herman, Methods of theoretical physics repr., Boston, [Mass.]: McGraw Hill, 1999, ISBN 0-07-043316-X  (This is a reprint of the original (1953) edition of this title.)
  • von Neumann, John; Beyer, Robert T. (tr.), Mathematical foundations of quantum mechanics, Princeton, [NJ.]: Princeton University Press, 1955 
  • Reed, Michael C.; Simon, Barry, Methods of modern mathematical physics (4 vol.), New York. {NY.]: Academic Press, 1972–1977, ISBN 0-12-585001-8 
  • Titchmarsh, Edward Charles, The theory of functions 2nd, London, [England]: Oxford University Press, 1939  (This tome was reprinted in 1985.)
  • Thirring, Walter E.; Harrell, Evans M. (tr.), A course in mathematical physics / [Lehrbuch der mathematischen Physik] (4 vol.), New York, [NY.]: Springer-Verlag, 1978–1983 
  • Weyl, Hermann; Robertson, H. P. (tr.), The theory of groups and quantum mechanics / [Gruppentheorie und Quantenmechanik], London, [England]: Methuen & Co., 1931 
  • Whittaker, Edmund Taylor; Watson, George Neville, A course of modern analysis: an introduction to the general theory of infinite processes and of analytic functions, with an account of the principal transcendental functions 4th, Cambridge: Cambridge University Press, 1927, ISBN 978-0-521-58807-2