指数函数积分表此条目没有列出任何参考或来源。 (2017年12月26日)维基百科所有的内容都应该可供查证。请协助补充可靠来源以改善这篇条目。无法查证的内容可能会因为异议提出而移除。以下是部分指数函数的积分表(书写时省略了不定积分结果中都含有的任意常数Cn) ∫ e c x d x = 1 c e c x {\displaystyle \int e^{cx}\;dx={\frac {1}{c}}e^{cx}} ∫ a c x d x = 1 c ln a a c x ( a > 0 , a ≠ 1 ) {\displaystyle \int a^{cx}\;dx={\frac {1}{c\ln a}}a^{cx}\qquad \qquad {\mbox{(}}a>0,{\mbox{ }}a\neq 1{\mbox{)}}} ∫ x e c x d x = e c x c 2 ( c x − 1 ) {\displaystyle \int xe^{cx}\;dx={\frac {e^{cx}}{c^{2}}}(cx-1)} ∫ x 2 e c x d x = e c x ( x 2 c − 2 x c 2 + 2 c 3 ) {\displaystyle \int x^{2}e^{cx}\;dx=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)} ∫ x n e c x d x = 1 c x n e c x − n c ∫ x n − 1 e c x d x {\displaystyle \int x^{n}e^{cx}\;dx={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}dx} ∫ e c x d x x = ln | x | + ∑ i = 1 ∞ ( c x ) i i ⋅ i ! {\displaystyle \int {\frac {e^{cx}\;dx}{x}}=\ln |x|+\sum _{i=1}^{\infty }{\frac {(cx)^{i}}{i\cdot i!}}} ∫ e c x d x x n = 1 n − 1 ( − e c x x n − 1 + c ∫ e c x x n − 1 d x ) ( n ≠ 1 ) {\displaystyle \int {\frac {e^{cx}\;dx}{x^{n}}}={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,dx\right)\qquad \qquad {\mbox{(}}n\neq 1{\mbox{)}}} ∫ e c x ln x d x = 1 c e c x ln | x | − Ei ( c x ) {\displaystyle \int e^{cx}\ln x\;dx={\frac {1}{c}}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)} ∫ e c x sin b x d x = e c x c 2 + b 2 ( c sin b x − b cos b x ) {\displaystyle \int e^{cx}\sin bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)} ∫ e c x cos b x d x = e c x c 2 + b 2 ( c cos b x + b sin b x ) {\displaystyle \int e^{cx}\cos bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)} ∫ e c x sin n x d x = e c x sin n − 1 x c 2 + n 2 ( c sin x − n cos x ) + n ( n − 1 ) c 2 + n 2 ∫ e c x sin n − 2 x d x {\displaystyle \int e^{cx}\sin ^{n}x\;dx={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;dx} ∫ e c x cos n x d x = e c x cos n − 1 x c 2 + n 2 ( c cos x + n sin x ) + n ( n − 1 ) c 2 + n 2 ∫ e c x cos n − 2 x d x {\displaystyle \int e^{cx}\cos ^{n}x\;dx={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;dx} ∫ x e c x 2 d x = 1 2 c e c x 2 {\displaystyle \int xe^{cx^{2}}\;dx={\frac {1}{2c}}\;e^{cx^{2}}} ∫ 1 σ 2 π e − ( x − μ ) 2 2 σ 2 d x = 1 2 σ ( 1 + erf x − μ σ 2 ) {\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}\;dx={\frac {1}{2\sigma }}\left(1+{\mbox{erf}}\,{\frac {x-\mu }{\sigma {\sqrt {2}}}}\right)} ∫ e x 2 d x = ∑ n = 0 ∞ x 2 n + 1 n ! ( 2 n + 1 ) {\displaystyle \int e^{x^{2}}\,dx=\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{n!(2n+1)}}} ∫ − ∞ ∞ e − a x 2 d x = π a {\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}\,dx={\sqrt {\pi \over a}}} (高斯积分) ∫ 0 ∞ x 2 n e − x 2 a 2 d x = π ( 2 n ) ! n ! ( a 2 ) 2 n + 1 {\displaystyle \int _{0}^{\infty }x^{2n}e^{-{\frac {x^{2}}{a^{2}}}}\,dx={\sqrt {\pi }}{(2n)! \over {n!}}{\left({\frac {a}{2}}\right)}^{2n+1}}