等差数列

等差数列,又名算术数列(英语:Arithmetic sequence[註 1]),是数列的一种。在等差数列中,任何相邻两项的差相等,该差值称为公差(common difference)。

例如数列:

3, 5, 7, 9, 11, 13, ...

就是一个等差数列。 在这个数列中,从第二项起,每项与其前一项之公差都相等

性质

如果一个等差数列的首项记作 a1,公差记作 d,那么该等差数列第 nan 的一般项为:

 

换句话说,任意一个等差数列 {an} 都可以写成

 


在一个等差数列中,给定任意两相连项 an+1an ,可知公差

 

给定任意两项 aman ,则有公差

 


此外,在一个等差数列中,选取某一项,该项的前一项与后一项之和,为原来该项的两倍。举例来说,a1 + a3 = 2a2

更一般地说,有:

 

证明如下:

 

证毕。


从另一个角度看,等差数列中的任意一项,是其前一项和后一项的算术平均

 

此结果从上面直接可得。


如果有正整数 m, n, p, q,使得  ,那么则有:

 

证明如下:

 


由此可将上面的性质一般化成:

 
 

其中 k 是一个小于 n 的整数。


给定一个等差数列  ,则有:

  •   是一个等差数列。
  •   是一个等差数列。
  •   是一个等比数列
  •   是一个等谐数列


从等差数列的一般项可知,任意一个可以写成

 

形成的数列,都是一个等差数列,其中公差 d = q,首项 a = p + q

等差数列和

一个等差数列的首 n 项之和,称为等差数列和(sum of arithmetic sequence)或算术级数(arithmetic series),记作 Sn

举例来说,等差数列 {1, 3, 5, 7} 的和是 1 + 3 + 5 + 7 = 16


等差数列求和的公式如下:

 

等差数列和在中文教科书中常表达为:

一个等差数列的和,等于其首项与末项的和,乘以项数除以2

公式证明如下:

将等差数列和写作以下两种形式:

 
 

将两公式相加来消掉公差 d,可得

 

整理可得第一种形式。

代入  ,可得第二种及第三种形式。


从上面的第三种形式展开可见,任意一个可以写成

 

形成的数列和,其原来数列都是一个等差数列,其中公差 d = 2q,首项 a = p + q

等差数列积

一个等差数列的首 n 项之积,称为等差数列积(product of arithmetic sequence),记作 Pn

举例来说,等差数列 {1, 3, 5, 7} 的积是 1 × 3 × 5 × 7 = 105


等差数列积的公式较为复杂,须以Γ函数表示:

 

证明如下:

 

这里的  xn上升阶乘幂,例子如  


使用上面的例子,对于数列 {1, 3, 5, 7}

 

结果相等。

参见

注释

  1. ^ 也有人使用arithmetic progression

参考文献