达西–威斯巴哈方程式

达西–威斯巴哈方程式流体力学中的唯象方程式,得名自物理学家亨利·达西尤利乌斯·威斯巴哈英语Julius Weisbach,此方程式描述固定长度管路内因摩擦力产生的扬程损失(或称为压强损失)和管路中的平均流速的关系。

达西–威斯巴哈方程式中包括一个无因次的摩擦因子,名为达西–威斯巴哈摩擦因子达西摩擦因子,此摩擦因子是范甯摩擦系数的四倍[1]

扬程损失的形式

可以用达西–威斯巴哈方程式计算扬程损失

 

其中

  • hf是因为摩擦力造成的扬程损失(国际标准制:m)
  • L是管路的长度(m)
  • D是管路的水力直径,若是截面为圆形的管路,等于管路的内直径(m)
  • V是流体的平均速率,等于湿面积单位截面的体积流率(m/s)
  • g是因为重力加速度(m/s2
  • fD是无因次的因子,称为达西摩擦因子。可以在穆迪图中找到,此因子并非范宁摩擦因子f。

达西摩擦因子

流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比。沿程阻力(直管阻力)损失的计算式中 λ——摩擦系数,与雷诺数Re和管壁粗糙度ε有关,可实验测定,也可计算得出。

层流时:

λ=64/Re

对于紊流流动,工程上通过以下两种途径确定:一种是以紊流的半经验理论为基础,结合实验结果,整理成阻力系数的半经验公式,比如穆迪图;另一种是直接根据实验结果,综合成阻力系数的经验公式。前者具有更为普遍的意义。

相关条目

参考资料

  1. ^ Manning, Francis S.; Thompson, Richard E., Oilfield Processing of Petroleum. Vol. 1: Natural Gas, PennWell Books, 1991, ISBN 0-87814-343-2 , 420 pages. See page 293.