多元正态分布

多变量正态分布亦称为多变量高斯分布。它是单维正态分布向多维的推广。它同矩阵正态分布有紧密的联系。

多元正态分布
概率密度函数
GaussianScatterPCA.png
Many samples from a multivariate (bivariate) Gaussian distribution centered at (1,3) with a standard deviation of 3 in roughly the (0.878, 0.478) direction (longer vector) and of 1 in the second direction (shorter vector, orthogonal to the longer vector).
记号
参数 μRN — 位置
ΣRN×N协方差矩阵 (半正定)
值域 xμ+span(Σ) ⊆ RN
概率密度函数
(仅当 Σ正定矩阵时)
累积分布函数 解析表达式不存在
期望值 μ
众数 μ
方差 Σ
矩生成函数
特征函数

一般形式

N维随机向量 如果服从多变量正态分布,必须满足下面的三个等价条件:

  1. 任何线性组合 服从正态分布
  2. 存在随机向量 ( 它的每个元素服从独立标准正态分布),向量   矩阵 满足 .
  3. 存在 和一个对称半正定阵 满足 特征函数
     

如果 非奇异的,那么该分布可以由以下的概率密度函数来描述:[1]

 

注意这里的 表示协方差矩阵的行列式。

二元的情况

在二维非奇异的情况下(k = rank(Σ) = 2),向量 [X Y]′概率密度函数为:

 

其中 ρXY 之间的相关系数  。在这种情况下,

 

参考文献

  1. ^ UIUC, Lecture 21. The Multivariate Normal Distribution页面存档备份,存于互联网档案馆), 21.5:"Finding the Density".