矩生成函数 在概率论和统计学中,一个实数值随机变量的矩母函数(moment-generating function)又称矩生成函数,矩亦被称作动差,矩生成函数是其概率分布的一种替代规范。 因此,与直接使用概率密度函数或累积分布函数相比,它为分析结果提供了替代途径的基础。 对于由随机变量的加权和定义的分布的矩生成函数,有特别简单的结果。 然而,并非所有随机变量都具有矩生成函数。 顾名思义,矩生成函数可用于计算分布的矩:关于 0 的第 n {\displaystyle n} 个矩是矩生成函数的第 n {\displaystyle n} 阶导数,在 0 处求值。 除了实值分布(单变量分布),矩生成函数可以定义为向量或矩阵值的随机变量,甚至可以扩展到更一般的情况。 与特征函数不同,一个实数值分布的矩生成函数并不总是存在。 分布的矩生成函数的行为与分布的性质之间存在关系,例如矩的存在。 目录 1 定义 2 计算 3 意义 4 例子 5 参见 6 注 7 参考文献 定义 随机变量 X {\displaystyle X} 的矩生成函数定义为: M X ( t ) = E ( e t X ) , t ∈ R {\displaystyle M_{X}(t)=\mathbb {E} \left(e^{tX}\right),\quad t\in \mathbb {R} } 前提是这个期望值存在。 计算 如果 X {\displaystyle X} 具有连续概率密度函数 f ( x ) {\displaystyle f(x)} ,则它的矩生成函数由下式给出: M X ( t ) = ∫ − ∞ ∞ e t x f ( x ) d x {\displaystyle M_{X}(t)=\int _{-\infty }^{\infty }e^{tx}f(x)\,\mathrm {d} x} = ∫ − ∞ ∞ ( 1 + t x + t 2 x 2 2 ! + ⋯ ) f ( x ) d x {\displaystyle =\int _{-\infty }^{\infty }\left(1+tx+{\frac {t^{2}x^{2}}{2!}}+\cdots \right)f(x)\,\mathrm {d} x} = 1 + t m 1 + t 2 m 2 2 ! + ⋯ {\displaystyle =1+tm_{1}+{\frac {t^{2}m_{2}}{2!}}+\cdots } 其中 m i {\displaystyle m_{i}} 是第 i {\displaystyle i} 个矩。 M X ( − t ) {\displaystyle M_{X}(-t)} 是 f ( x ) {\displaystyle f(x)} 的双边拉普拉斯变换。 不管概率分布是不是连续,动差生成函数都可以用黎曼-斯蒂尔吉斯积分给出: M X ( t ) = ∫ 0 1 e t x d F ( x ) {\displaystyle M_{X}(t)=\int _{0}^{1}e^{tx}\,dF(x)} 其中 F {\displaystyle F} 是累积分布函数。 如果 X 1 , X 2 , … , X n {\displaystyle X_{1},X_{2},\ldots ,X_{n}} 是一系列独立的随机变量,且 S n = ∑ i = 1 n a i X i {\displaystyle S_{n}=\sum _{i=1}^{n}a_{i}X_{i}} 其中 a i {\displaystyle a_{i}} 是常数,则 S n {\displaystyle S_{n}} 的概率密度函数是每一个 X i {\displaystyle X_{i}} 的概率密度函数的卷积,而 S n {\displaystyle S_{n}} 的动差生成函数则为: M S n ( t ) = M X 1 ( a 1 t ) M X 2 ( a 2 t ) ⋯ M X n ( a n t ) {\displaystyle M_{S_{n}}(t)=M_{X_{1}}(a_{1}t)M_{X_{2}}(a_{2}t)\cdots M_{X_{n}}(a_{n}t)} 。对于分量为实数的向量值随机变量X,动差生成函数为: M X ( t ) = E ( e ⟨ t , X ⟩ ) {\displaystyle M_{X}(\mathbf {t} )=\operatorname {E} \left(e^{\langle \mathbf {t} ,\mathbf {X} \rangle }\right)} 其中 t {\displaystyle \mathbf {t} } 是一个向量, ⟨ t , X ⟩ {\displaystyle \langle \mathbf {t} ,\mathbf {X} \rangle } 是数量积。 意义 只要动差生成函数在 t = 0 {\displaystyle t=0} 周围的开区间存在,第 n {\displaystyle n} 个矩为: E ( X n ) = M X ( n ) ( 0 ) = d n M X ( t ) d t n | t = 0 {\displaystyle \operatorname {\mathbb {E} } \left(X^{n}\right)=M_{X}^{(n)}(0)=\left.{\frac {\mathrm {d} ^{n}M_{X}(t)}{\mathrm {d} t^{n}}}\right|_{t=0}} 。如果动差生成函数在这个区间内是有限的,则它唯一决定了一个概率分布。 一些其它在概率论中常见的积分变换也与动差生成函数有关,包括特征函数以及概率生成函数。 累积量生成函数是动差生成函数的对数。 例子 下面是一些矩生成函数和特征函数的例子,用于比较。 可以看出,特征函数是矩生成函数 M X ( t ) {\displaystyle M_{X}(t)} 存在时的威克转动(Wick rotation)。 分布 矩生成函数 M X ( t ) {\displaystyle M_{X}(t)} 特征函数 φ ( t ) {\displaystyle \varphi (t)} 退化 δ a {\displaystyle \delta _{a}} e t a {\displaystyle e^{ta}} e i t a {\displaystyle e^{ita}} 伯努利 P ( X = 1 ) = p {\displaystyle P(X=1)=p} 1 − p + p e t {\displaystyle 1-p+pe^{t}} 1 − p + p e i t {\displaystyle 1-p+pe^{it}} 几何 ( 1 − p ) k − 1 p {\displaystyle (1-p)^{k-1}\,p} p e t 1 − ( 1 − p ) e t {\displaystyle {\frac {pe^{t}}{1-(1-p)e^{t}}}} ∀ t < − ln ( 1 − p ) {\displaystyle \forall t<-\ln(1-p)} p e i t 1 − ( 1 − p ) e i t {\displaystyle {\frac {pe^{it}}{1-(1-p)\,e^{it}}}} 二项式 B ( n , p ) {\displaystyle B(n,p)} ( 1 − p + p e t ) n {\displaystyle \left(1-p+pe^{t}\right)^{n}} ( 1 − p + p e i t ) n {\displaystyle \left(1-p+pe^{it}\right)^{n}} 负二项 NB ( r , p ) {\displaystyle \operatorname {NB} (r,p)} [注 1] ( p 1 − e t + p e t ) r , t < − log ( 1 − p ) {\displaystyle \left({\frac {p}{1-e^{t}+pe^{t}}}\right)^{r},t<-\log(1-p)} [1] ( p 1 − e i t + p e i t ) r {\displaystyle \left({\frac {p}{1-e^{it}+pe^{it}}}\right)^{r}} 泊松 Pois ( λ ) {\displaystyle \operatorname {Pois} (\lambda )} e λ ( e t − 1 ) {\displaystyle e^{\lambda (e^{t}-1)}} e λ ( e i t − 1 ) {\displaystyle e^{\lambda (e^{it}-1)}} 均匀(连续型) U ( a , b ) {\displaystyle \operatorname {U} (a,b)} e t b − e t a t ( b − a ) {\displaystyle {\frac {e^{tb}-e^{ta}}{t(b-a)}}} e i t b − e i t a i t ( b − a ) {\displaystyle {\frac {e^{itb}-e^{ita}}{it(b-a)}}} 均匀(离散型) DU ( a , b ) {\displaystyle \operatorname {DU} (a,b)} e a t − e ( b + 1 ) t ( b − a + 1 ) ( 1 − e t ) {\displaystyle {\frac {e^{at}-e^{(b+1)t}}{(b-a+1)(1-e^{t})}}} e a i t − e ( b + 1 ) i t ( b − a + 1 ) ( 1 − e i t ) {\displaystyle {\frac {e^{ait}-e^{(b+1)it}}{(b-a+1)(1-e^{it})}}} 拉普拉斯 L ( μ , b ) {\displaystyle L(\mu ,b)} e t μ 1 − b 2 t 2 , | t | < 1 b {\displaystyle {\frac {e^{t\mu }}{1-b^{2}t^{2}}},~\left\vert t\right\vert <{\frac {1}{b}}} e i t μ 1 + b 2 t 2 {\displaystyle {\frac {e^{it\mu }}{1+b^{2}t^{2}}}} 正态 N ( μ , σ 2 ) {\displaystyle N(\mu ,\sigma ^{2})} e t μ + 1 2 σ 2 t 2 {\displaystyle e^{t\mu +{\frac {1}{2}}\sigma ^{2}t^{2}}} e i t μ − 1 2 σ 2 t 2 {\displaystyle e^{it\mu -{\frac {1}{2}}\sigma ^{2}t^{2}}} 卡方(Chi-squared) χ k 2 {\displaystyle \chi _{k}^{2}} ( 1 − 2 t ) − k 2 {\displaystyle (1-2t)^{-{\frac {k}{2}}}} ( 1 − 2 i t ) − k 2 {\displaystyle (1-2it)^{-{\frac {k}{2}}}} Noncentral chi-squared χ k 2 ( λ ) {\displaystyle \chi _{k}^{2}(\lambda )} e λ t 1 − 2 t ( 1 − 2 t ) − k 2 {\displaystyle e^{\frac {\lambda t}{1-2t}}(1-2t)^{-{\frac {k}{2}}}} e i λ t / ( 1 − 2 i t ) ( 1 − 2 i t ) − k 2 {\displaystyle e^{i\lambda t/(1-2it)}(1-2it)^{-{\frac {k}{2}}}} 伽玛(Gamma) Γ ( k , θ ) {\displaystyle \Gamma (k,\theta )} ( 1 − t θ ) − k , ∀ t < 1 θ {\displaystyle (1-t\theta )^{-k},~\forall t<{\tfrac {1}{\theta }}} ( 1 − i t θ ) − k {\displaystyle (1-it\theta )^{-k}} 指数(Exponential) Exp ( λ ) {\displaystyle \operatorname {Exp} (\lambda )} ( 1 − t λ − 1 ) − 1 , t < λ {\displaystyle \left(1-t\lambda ^{-1}\right)^{-1},~t<\lambda } ( 1 − i t λ − 1 ) − 1 {\displaystyle \left(1-it\lambda ^{-1}\right)^{-1}} 多元正态 N ( μ , Σ ) {\displaystyle N(\mathbf {\mu } ,\mathbf {\Sigma } )} e t T ( μ + 1 2 Σ t ) {\displaystyle e^{\mathbf {t} ^{\mathrm {T} }\left({\boldsymbol {\mu }}+{\frac {1}{2}}\mathbf {\Sigma t} \right)}} e t T ( i μ − 1 2 Σ t ) {\displaystyle e^{\mathbf {t} ^{\mathrm {T} }\left(i{\boldsymbol {\mu }}-{\frac {1}{2}}{\boldsymbol {\Sigma }}\mathbf {t} \right)}} 柯西(Cauchy) Cauchy ( μ , θ ) {\displaystyle \operatorname {Cauchy} (\mu ,\theta )} 不存在 e i t μ − θ | t | {\displaystyle e^{it\mu -\theta |t|}} Multivariate Cauchy MultiCauchy ( μ , Σ ) {\displaystyle \operatorname {MultiCauchy} (\mu ,\Sigma )} [2] 不存在 e i t T μ − t T Σ t {\displaystyle \!\,e^{i\mathbf {t} ^{\mathrm {T} }{\boldsymbol {\mu }}-{\sqrt {\mathbf {t} ^{\mathrm {T} }{\boldsymbol {\Sigma }}\mathbf {t} }}}} 参见 主矩 矩 阶乘动差生成函数 速率函数注 ^ 此处定义为:每次独立随机试验的成功率为 p {\displaystyle p} 时,第 r {\displaystyle r} 次成功前的失败次数的分布。定义上的差异详见负二项分布。 参考文献 ^ Weisstein, Eric W. (编). Wolfram MathWorld (首頁). at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2022-11-21] (英语). 式(11)。 ^ Kotz et al.[需要完整来源] p. 37 using 1 as the number of degree of freedom to recover the Cauchy distribution