离散型均匀分布

统计学概率理论中,离散型均匀分布是离散型概率分布,其中有限个数值拥有相同的概率。离散型均匀分布的另一种说法为“有限个结果,各结果的概率均相同”。

离散型均匀分布
概率质量函数
Discrete uniform probability mass function for n=5
n=5 where n=b-a+1
累积分布函数
Discrete uniform cumulative mass function for n=5
参数

值域
概率质量函数
累积分布函数
期望值
中位数
众数 N/A
方差
偏度
峰度
矩生成函数
特征函数

像均匀的骰子就是离散型均匀分布的例子,可能的值为1, 2, 3, 4, 5, 6,而每一个数字的概率都是1/6。但若同时丢二个均匀骰子,将其值相加,就不是离散型均匀分布了,因为各个和的概率不同。 离散型均匀分布常用来描述结果为数字的分布,不过离散型均匀分布也可以描述结果是有限集合的分布。例如随机排列英语random permutation就是由已知长度的排列中均匀随机产生的组合,而均匀生成树英语uniform spanning tree是由给定的树中均匀随机产生的生成树

离散型均匀分布在本质上是非参数(non-parametric)的。不过要表示其值很容易,就用[a,b]之间的所有整数即可,因此ab就是离散型均匀分布的主要参数(也常常改为考虑区间[1,n],只保留一个参数n)。若用这种表示法,针对任意k ∈ [a,b]的累积分布函数(CDF)为