六阶四面体堆砌

在几何学中,六阶四面体堆砌是一种由四面体完全填满仿紧双曲空间的几何结构,属于正图形[1],每条边都是6个四面体的公共边,其所有顶点都是无穷远点,每个顶点都是无穷多个四面体的公共顶点,为正三角形镶嵌的顶点排布英语Vertex_arrangement。其对偶几何图形为三阶六边形镶嵌蜂巢体[2]

六阶四面体堆砌
H3 336 CC center.png
类型双曲正堆砌
家族堆砌
维度三维双曲空间
对偶多胞形三阶六边形镶嵌蜂巢体
数学表示法
考克斯特符号
英语Coxeter-Dynkin diagram
node_1 3 node 3 node 6 node 
node_1 3 node 3 node 6 node_h0 node_1 3 node split1 branch 
施莱夫利符号{3,3,6}
{3,3[3]}
性质
{3,3} Uniform polyhedron-33-t0.png
正三角形 {3}
组成与布局
顶点图正三角形镶嵌 {3,6}
Uniform tiling 63-t2.png Uniform tiling 333-t1.png
node_1 3 node 6 node 
对称性
对称群, [6,3,3]
, [3,3[3]]
特性

相关多胞体及堆砌

其与二维空间中的无限接三角形镶嵌类似,顶点都是无穷远点

 

六阶四面体堆砌是十一种三维仿紧正双曲密铺之一,其他十种三维仿紧正双曲密铺为:

十一种三维仿紧正双曲密铺
 
{6,3,3}
(镶嵌蜂巢体)
 
{6,3,4}英语Order-4 hexagonal tiling honeycomb
(镶嵌蜂巢体)
 
{6,3,5}英语Order-5 hexagonal tiling honeycomb
(镶嵌蜂巢体)
 
{6,3,6}英语order-6 hexagonal tiling honeycomb
(镶嵌蜂巢体)
 
{4,4,3}英语Square tiling honeycomb
(镶嵌蜂巢体)
 
{4,4,4}英语Order-4_square_tiling_honeycomb
(镶嵌蜂巢体)
 
{3,3,6}
(多面体堆砌
 
{4,3,6}英语order-6 cubic honeycomb
(多面体堆砌)
 
{5,3,6}英语Order-6 dodecahedral honeycomb
(多面体堆砌)
 
{3,6,3}英语Triangular tiling honeycomb
(镶嵌蜂巢体)
 
{3,4,4}英语Order-4 octahedral honeycomb
(镶嵌蜂巢体)

参见

参考文献

  1. Jeffrey R. Weeks The Shape of Space, 2nd edition Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2015) Chapter 13: Hyperbolic Coxeter groups
  1. ^ Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. LCCN 99-35678, 互联网档案馆)) Table III