七阶四面体堆砌
在几何学中,七阶四面体堆砌是一种位于双曲三维非紧空间的双曲正堆砌,由正四面体组成,在施莱夫利符号中用{3,3,7}来表示,考克斯特-迪肯符号中以表示[1] 。每个棱都是七个正四面体的公共棱。
七阶四面体堆砌 | |
---|---|
类型 | 双曲正堆砌 |
家族 | 堆砌 |
维度 | 三维双曲空间 |
对偶多胞形 | 三阶七边形镶嵌蜂巢体 |
数学表示法 | |
考克斯特符号 | |
施莱夫利符号 | {3,3,7} |
性质 | |
胞 | {3,3} |
面 | {3} |
组成与布局 | |
顶点图 | ({3,7}) |
对称性 | |
对称群 | [7,3,3] |
特性 | |
正 | |
性质
由于正四面体不能堆满三维空间,让棱成为五个正四面体的公共棱之后,剩下的空间无法再放入一个正四面体,因此六阶四面体堆砌就只能密铺于双曲空间[2],若再放入一个正四面体则无法存于双曲紧凑空间,即图形发散,无法收敛于无穷远处。
相关多胞体与堆砌
七阶四面体堆砌是一种由正四面体组成的堆砌,其他胞也由正四面体组成多胞体与堆砌或蜂巢体包含:
{3,3,p}多胞体 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
空间 | S3 | H3 | |||||||||
构造 | 有限 | 仿紧 | 非紧 | ||||||||
施莱夫利符号 考克斯特符号 |
{3,3,3} |
{3,3,4} |
{3,3,5} |
{3,3,6} |
{3,3,7} |
{3,3,8} |
... {3,3,∞} | ||||
图像 | |||||||||||
Vertex figure |
{3,3} |
{3,4} |
{3,5} |
{3,6} |
{3,7} |
{3,8} |
{3,∞} |
参见
参考文献
- George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [3]Archive.is的存档,存档日期2013-06-30
- Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[4](页面存档备份,存于互联网档案馆)
- ^ Humphreys, 1990, page 141, 6.9 List of hyperbolic Coxeter groups, figure 2 [1] (页面存档备份,存于互联网档案馆)
- ^ The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678. (Chapter 10, Regular Honeycombs in Hyperbolic Space (PDF). [2016-07-18]. (原始内容 (PDF)存档于2016-06-10).)
- ^ C. W. L. Garner, Regular Skew Polyhedra in Hyperbolic Three-Space Canad. J. Math. 19, 1179–1186, 1967. PDF [2] (页面存档备份,存于互联网档案馆)