罗素公理体系
不加定义的概念
在类的公理体系中,有一些基本的概念是不加定义的,我们只能从其客观含义上给予解释,但这样的解释仅仅起到帮助理解这些概念。
数学中研究的任何一个客体对象都称为一个类。类的概念是没有任何限制。类与类之间可能存在着一种称为属于的关系,类A属于类B记为 ,此时也称类A是类B的一个元素(简称为元)。我们可以把类理解成为是由若干元素组成的一个整体。一个类是否是另一个类的元素是完全确定的,这就是类元素的确定性。类A如果不是类B的元素,则称A不属于B,记为 。
另一个不加定义的概念就是:类总是具有一定的性质,我们常以P(x)表示类x具有性质P。我们可以把性质理解为“关于类的一句表述”。
我们还认为逻辑学中的基本概念与基本知识是类理论的基础。
类的外延公理
公理Ⅰ(外延公理) 。
公理Ⅰ的含义是:两个类“相等”的充要条件是它们的元素完全相同,这就是说,类完全由其元素确定。类的所有元素可以通俗地称为它的外延,正因如此,公理Ⅰ被称为外延公理。由此我们可以定义:
定义1.1两个类A、B,如果它们的元素完全相同,则称这两个类是相等的,记为 。
因此,类完全由其外延确定。
由外延公理我们可以得出:类中的元素是不会重复出现的(准确地说,重复出现的元素仍然被当作一个元素),这就是类元素的互异性;类中的元素是不计其出现在类中的顺序的,这就是类元素的无序性。
一个类可能由若干元素组成,而它本身又可能成为另外的类的元素,这就是类元素的相对性。
类的内涵与罗素悖论
一般地说,类中的元素总是具有某种共同的性质的,这就是类的元素的同质性。
一个类的所有元素所共同具有的、而且是这个类的元素所独有的性质(也就是说不是该类的元素就不具有该性质)通俗地称为该类的内涵。类的内涵与外延之间存在着直观的“反比关系”:类的内涵越多,其外延越小;内涵越少,其外延越大。
对于类的内涵问题,我们通常希望:任给一个性质,满足该性质的所有类可以组成一个类。但这样的企图将导致如下的悖论:
罗素悖论设性质P(x)表示“ ”,现假设由性质P确定了一个类A----也就是说“ ”。那么现在的问题是: 是否成立?首先,若 ,则A是A的元素,那么A具有性质P,由性质P知 ;其次,若 ,也就是说A具有性质P,而A是由所有具有性质P的元素组成的,所以 。
罗素悖论还有一些更为通俗的描述,如理发师悖论:
理发师悖论某理发师发誓“要给所有不自己理发的人理发,不给所有自己理发的人理发”,现在的问题是“谁为该理发师理发?”。首先,若理发师给自己理发,那他就是一个“自己理发的人”,依其誓言“他不给自己理发”;其次,若“他不给自己理发”,依其誓言,他就必须“给自己理发”。
而书目悖论也是罗素悖论的一种通俗表达形式。
真类与集合
为解决此类悖论,我们把类区分为两种:
定义1.2如果存在类B,而类A满足条件“ ”,则称类A为一个集合(简称为集),记为 。
定义1.2说明,一个集合是类的一种,它可以成为其它类的一个元素,这也正是集合的"严格"定义。
有另一种集合的定义:已存在一个类B,其中凡是符合属性P(x)的,可以构成一个类A。类A则是一个集合,或者说是B的一个子类。但对此种定义,人们可以提出质疑,不能保证A不是真类。但人们还是乐于接受该定义的。但定义说不上严格。
集合能进行各种类运算。
真类不是集合的类就是真类。真类是一种能以自身作为元素的类,对于真类,类运算并不一定都能进行。
一个真类却不能成为其它类的元素。因此我们可以理解为“本性类是最高层次的类”。
罗素悖论等于用反证法证明了真类的存在。但真类是抽象难理解的。
但是,“类和集合是非常一般的概念,什么是集合的问题是不能彻底回答的。只有随着数学实践来确定哪些类是集合,哪些类是真类,任何时间,总有一些类无法确定其到底是不是集合。”
类的内涵公理
公理Ⅱ(内涵公理)设P是一个性质,则 。
公理Ⅱ的含义是:满足一定性质的所有集合可以组成一个类。
内涵公理能够解决罗素悖论:令P(x)为“ ”(称为罗素性质)。我们无法确定所有满足P的类能否构成一个类,但是依据内涵公理,我们可以确定满足P的所有集合能够构成一个类 (这就证明了下面的性质1.1)。这时,可以得出“ ”,即“ ”。这并不导致悖论,只是说明:A不是集合;因此A是本性类,我们把这个类称为罗素类。
对于内涵公理,任给一个对所有集合都满足的性质P,如 ,则有:
性质1.1所有的集合构成一个真类。
我们把所有集合构成的类称为极限类(真类),它是类理论所承认的“最大的”类。
由公理Ⅰ(外延公理)、公理Ⅱ(内涵公理)组成的公理体系我们称为罗素公理体系,这是关于类的理论的最基本的公理体系。
罗素公理体系与罗素悖论
罗素悖论产生的原因,是把真类当成集合。
可以说,罗素公理体系在两方面避免罗素悖论:第一,不存在包含自身的集合(包含自身的类是真类)。第二,“所有”集合的总体不是集合!而是一个真类。因为“所有”一词,包含了自身。
以书目悖论为例,根据罗素公理体系,所有符合条件的书的确构成了一个集合,因为它们可以与其它的书进一步构成更大的整体(集合的定义)--比如它们和不符合条件的书共同构成了图书馆里所有的书(类)。问题“这本书要记下自己的书名吗?”,即是,它包含自己吗?已经没有回答的意义。因为根据内涵定义,不存在包含真类的集合。所以实物上不存在里面提到的那一本目录书(也有人认为那是一个非法的集合,一个集合要包含自身,但又要和集合内其它元素相区别,是不可能的)。但注意,这一抽象概念却是存在的,它是一个真类。
在理发师悖论里,理发师其实划出了一个真类。如果理发师修改一下自己的说法:“除了我理发师本人之外,我给所有不给自己理发的人理发”,悖论就被避免了。因为理发师此时定义了一个集合(根据声明,他不在自己定义的服务群里)。
注意:罗素公理体系只是“避免”了罗素悖论,并没有解决罗素悖论。罗素公理体系的提出,是保证不产生悖论,又要求这些公理的范围足够宽,能容纳全部数学。就是说要给数学提供足够的集合。
术语
参看
- 公理化数学
- 类的表示法
链接
- 北京大学哲学系-集合论悖论[永久失效链接]