纽结多项式

纽结理论中,扭结多项式指的是一类以多项式表达的纽结不变量(knot invariant),而此类多项式的系数则表示它所代表的纽结的一些性质。

历史

第一个已知的纽结多项式,也就是所谓的亚历山大多项式,是由詹姆斯·韦德尔·亚历山大在1923年引进的,但其他的纽结多项式却一直都没找到,直到近六十年后。

在1960年代,约翰·何顿·康威找出了一个对于亚历山大多项式的某版本的纠结关系(skein relation),这又被称为所谓的康威─亚历山大多项式。纠结关系的重要性直到1980年代前期沃恩‧锺斯发现锺斯多项式前都未被理解。这导致了更多纽结多项式的发现,如所谓的HOMFLY多项式

锺斯发现该多项式不久后,路易‧考夫曼(Louis Kauffman)便注意到说锺斯多项式可借由配分函数(即泛函积分状态和模型、state-sum model)来计算,这牵涉到所谓的括号多项式,该多项式为框多项式(framed knot)的一个不变量。这开启了连结纽结理论和统计力学间关系的研究。

在1980年代晚期,这方面有两个重要的突破。爱德华·威滕指出了锺斯多项式及相似的锺斯式不变量,有个以陈─西蒙斯理论陈-西蒙斯理论)进行解释的方法。维克托‧瓦西里耶夫(Viktor Vassiliev)和米哈伊尔‧高萨罗夫(Mikhail Goussarov)则开始了纽结的有限类不变量(finite type invariant)的理论。

近年来,亚历山大多项式已被证明与弗洛尔同调(Floer homology)相关。

陈-西蒙斯理论

三维的陈-西蒙斯理论生成很多重要的纽结多项式和纽结不变量:[1]

陈西理论的纽结拓扑不变量
陈西规范群G 纽结多项式或不变量
SO(N) 考夫曼多项式
SU(N) HOMFLY多项式
SU(2)或SO(3) 锺斯多项式(跟括号多项式有关)
U(1) 环绕数

相关书目