Chi函数Chi 函数定义如下[1][2] Chi(x) 2D plot Chi(x) 3D plot C h i ( z ) = ∫ 0 z cosh ( t ) t d t {\displaystyle {\it {Chi}}\left(z\right)=\int _{0}^{z}\!{\frac {\cosh \left(t\right)}{t}}{dt}} C h i ( z ) {\displaystyle Chi(z)} 是下列三阶非线性常微分方程的一个解: z d d z w ( z ) − 2 d 2 d z 2 w ( z ) − z d 3 d z 3 w ( z ) = 0 {\displaystyle z{\frac {d}{dz}}w\left(z\right)-2\,{\frac {d^{2}}{d{z}^{2}}}w\left(z\right)-z{\frac {d^{3}}{d{z}^{3}}}w\left(z\right)=0} 即: w ( z ) = _ C 1 + _ C 2 C h i ( z ) + _ C 3 S h i ( z ) {\displaystyle w\left(z\right)={\it {\_C1}}+{\it {\_C2}}\,{\it {Chi}}\left(z\right)+{\it {\_C3}}\,{\it {Shi}}\left(z\right)} 目录 1 对称性 2 表示为其他特殊函数 3 级数展 4 图集 5 参见 6 参考文献 对称性 C h i ( − z ) = C h i ( z ) {\displaystyle Chi(-z)=Chi(z)} 表示为其他特殊函数 Meijer G函数 {\displaystyle } − 1 2 π G 1 , 3 2 , 0 ( − 1 / 4 z 2 | 0 , 0 , 1 / 2 1 ) − 1 / 2 i π {\displaystyle {\frac {-1}{2}}\,{\sqrt {\pi }}G_{1,3}^{2,0}\left(-1/4\,{z}^{2}\,{\Big \vert }\,_{0,0,1/2}^{1}\right)-1/2\,i\pi } 超几何函数 C h i ( z ) = z ∗ 1 F 2 ( 1 , 1 ; 3 / 2 , 2 , 2 ; ( 1 / 4 ) ∗ z 2 ) {\displaystyle Chi(z)=z*_{1}F_{2}(1,1;3/2,2,2;(1/4)*z^{2})} 级数展 C h i ( z ) = ( γ + ln ( z ) + 1 4 z 2 + 1 96 z 4 + 1 4320 z 6 + 1 322560 z 8 + 1 36288000 z 10 + 1 5748019200 z 12 + 1 1220496076800 z 14 + O ( z 16 ) ) {\displaystyle {\it {Chi}}\left(z\right)=(\gamma +\ln \left(z\right)+{\frac {1}{4}}{z}^{2}+{\frac {1}{96}}{z}^{4}+{\frac {1}{4320}}{z}^{6}+{\frac {1}{322560}}{z}^{8}+{\frac {1}{36288000}}{z}^{10}+{\frac {1}{5748019200}}{z}^{12}+{\frac {1}{1220496076800}}{z}^{14}+O\left({z}^{16}\right))} 图集 Chi(x) Re complex 3D plot Chi(x) Im complex 3D plot Chi(x) abs complex 3D plot Chi(x) abs complex density plot Chi(x) Re complex density plot Chi(x) Im complex density plot 参见 Sinhc函数 Coshc函数 Tanc函数 Tanhc函数 Shi函数参考文献 ^ Abramowitz, M. and Stegun, I. A. (Eds.). "Sine and Cosine Integrals." §5.2 inHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 231-233, 1972. ^ Sloane, N. J. A. Sequence A061079 in "The On-Line Encyclopedia of Integer Sequences