超对称杨-米尔斯理论
四维(N=4)
N=4超杨米理论的拉格朗日量是[2]
i, j =1,...,6
a, b =1,...,4
是杨米尔斯规范群的结构常数
是SU(4)的结构常数
由于非重整化定理,这是一个超共形场论。
十维
N=10的拉氏量是
I, J = 0, ..., 9
是32x32的矩阵
应用
- S对偶的耦合常数:
- AdS/CFT对偶、全像原理、类型IIB弦理论、量子引力
参考文献
- ^ Matt von Hippel. Earning a PhD by studying a theory that we know is wrong. Ars Technica. 2013-05-21 [2020-03-07]. (原始内容存档于2021-01-28).
- ^ Luke Wassink. N = 4 Super Yang–Mills theory (PDF). 2009 [2013-05-22]. (原始内容 (PDF)存档于2014-05-31).
- ^ Martin Ammon, Johanna Erdmenger, Gauge/Gravity Duality: Foundations and Applications, Cambridge University Press, 2015, p. 240.
- ^ planar limit in nLab. [2020-03-07]. (原始内容存档于2020-10-01).
- ^ Beisert, Niklas. Review of AdS/CFT Integrability: An Overview. Letters in Mathematical Physics. January 2012, 99: 425. Bibcode:2012LMaPh..99..425K. arXiv:1012.4000 . doi:10.1007/s11005-011-0516-7.
阅读
- Kapustin, Anton; Witten, Edward. Electric-magnetic duality and the geometric Langlands program. Communications in Number Theory and Physics. 2007, 1 (1): 1–236. Bibcode:2007CNTP....1....1K. arXiv:hep-th/0604151 . doi:10.4310/cntp.2007.v1.n1.a1.