柯西刚性定理

柯西刚性定理(Cauchy's theorem)是几何学的定理,得名自数学家奥古斯丁-路易·柯西。柯西刚性定理提到二个三维的凸多面体若有其对应面都全等,则两者多胞形本身也会全等。若将凸多面体展开,使各面都在同一个平面上,再加上多面体的哪些面会相连的说明,这可以确定多面体的形状,而且符合的多面体只会有一个。例如,立方体的展开图会是六个正方形,若有一个凸多面体,展开后也是六个正方形,且各面连接方式和立方体展开图相同,则该多面体一定是立方体。不可能有其他不是立方体,但展开图和立方体相同的凸多面体。

柯西刚性定理是结构刚性理论的基础。若有人用刚性材质组成凸多胞形的面,使各面不会变形,面和面之间有铰链相连,所组成的多面体会是刚性结构。

参考资料

  • A. L. Cauchy, "Recherche sur les polyèdres – premier mémoire", Journal de l'École Polytechnique 9 (1813), 66–86.
  • Max Dehn, "Über die Starrheit konvexer Polyeder"页面存档备份,存于互联网档案馆) (in German), Math. Ann. 77 (1916), 466–473.
  • Aleksandr Danilovich Aleksandrov, Convex polyhedra, GTI, Moscow, 1950. English translation: Springer, Berlin, 2005.
  • James J. Stoker, "Geometrical problems concerning polyhedra in the large", Comm. Pure Appl. Math. 21 (1968), 119–168.
  • Robert Connelly, "Rigidity", in Handbook of Convex Geometry, vol. A, 223–271, North-Holland, Amsterdam, 1993.