互素

互质英文:Coprime,符号:⊥,又称互素、relatively prime、mutually prime、co-prime)[1]。在数论中,如果两个或两个以上的整数最大公约数1,则称它们为互质[2]。依此定义:

  • 如果数域正整数,那么1与所有正整数互素[3]
  • 如果数域整数 ,那么1-1与所有整数互素[4],而且它们是仅有与0互素的整数[5]

两个整数ab互素,记为ab

互素的例子

例如 810 的最大公约数是 2,不是 1,因此它们并不互质。
又例如 7, 10, 13 的最大公约数是 1,因此它们互质。

最大公因数可以通过辗转相除法得到。

整集互素与两两互素

三个或三个以上的整数互质有两种不同的情况:

  • 这些整数的最大公约数是 1,我们直接称这些整数互素[6],也称为整集互素(英语:setwise coprime[7]。以   为例:
 
  • 这些整数是两两互质的(英语:pairwise coprime)。以   为例:
 

两两互素是较为严格的互素,如果一个整数集合是两两互素的,它也必定是整集互素,但是整集互素不必然是两两互素,甚至可能两两皆不互素,例如 ,是整集互素,但   ,任两者皆不互素。

性质

性质之一:整数a和b互质当且仅当存在整数x,y使得xa+yb=1。 或者,一般的,有存在整数x,y使得xa+yb=d,其中d是a和b的最大公因数。(贝祖等式

判别方法

  1. 两个不同的素数一定互质。例如,2与7、13与19。
  2. 一个素数,另一个不为它的倍数,这两个数互质。例如,3与10、5与 26。
  3. 1和任何一个自然数都互质。如1和9908。
  4. 相邻两个自然数互质。如15与16。
  5. 相邻两个奇数互质。如49与51。
  6. 较大数是素数,则两个数互质。如97与88。
  7. 两数都是合数(二数差较大),较小数所有的素因数,都不是较大数的因数,这两个数互质。如357与715,357=3×7×17,而3、7和17都不是715的因数,故这两数互质。
  8. 两数都是合数(二数差较小),这两数之差的所有素因数都不是较小数的因数,这两个数互质。如85和78。85-78=7,7不是78的因数,故这两数互质。
  9. 两数都是合数,较大数除以较小数的余数(大于“1”)的所有素因数,都不是较小数的因数,则两数互质。如 462与 221,462÷221=2...20,20=2×2×5。2、5都不是221的因数,故这两数互质。
  10. 辗转相除法。如255与182。255-182=73,182-(73×2)=36,73-(36×2)=1,则(255,182)=1。故这两数互质。

参考来源

  1. ^ Eaton, James S. Treatise on Arithmetic. 1872. May be downloaded from: http://archive.org/details/atreatiseonarit05eatogoog
  2. ^ Number Theory in Science and Communication, p.28. [2014-10-19]. (原始内容存档于2014-10-19). 
  3. ^ Wiktionary - coprime页面存档备份,存于互联网档案馆) 以正整数为数域来定义互素。
  4. ^ ProofWiki > Definition:Coprime/Integers. [2014-10-19]. (原始内容存档于2020-03-27). 
  5. ^ ProofWiki > Integers Coprime to Zero. [2014-10-19]. (原始内容存档于2020-03-27). 
  6. ^ StackExchange > a problem with coprime numbers. [2014-10-19]. (原始内容存档于2020-09-21). 
  7. ^ Algebra II: Chapters 4-7, p.14

外部参考