极小质数

极小质数(英语:minimal prime)是娱乐数学中的一个名词,若一质数在数字顺序不变下,所有子序列都不是质数,该质数就是极小质数。

在十进制下,极小质数共有以下26个:

2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 (A071062)

以409为例,其子序列有4,0,9,40,49,09,都不是质数,因此409为极小质数。子序列不一定要在原质数中连续的位子上,例如109,因为子序列中的19是质数,因此109不是极小质数。子序列的数字顺序需和原来相同,不能将两数字的顺序对调,例如991,虽然19是质数,但因为位置对调,不在考虑范围内,而其他子序列都不是质数,因此991是极小质数。

以类似的概念来看,以下的32个合数在数字顺序不变下,所有子序列都不是合数:

4, 6, 8, 9, 10, 12, 15, 20, 21, 22, 25, 27, 30, 32, 33, 35, 50, 51, 52, 55, 57, 70, 72, 75, 77, 111, 117, 171, 371, 711, 713, 731 (OEIS数列A071070).

参考资料