关于同名角度单位,请见“
梯度 (角) ”。
在向量微积分 中,梯度 (英语:gradient )是一种关于多元导数 的概括[1] 函数 的导数是标量值函数 ,而多元函数 的梯度是向量值函数 。多元 可微函数 
  
    
      
        f 
       
     
    {\displaystyle f} 
    
  
    
      
        P 
       
     
    {\displaystyle P} 
    
  
    
      
        f 
       
     
    {\displaystyle f} 
    
  
    
      
        P 
       
     
    {\displaystyle P} 
    偏导数 为分量的向量 [2] 
上面两个图中,标量场的值用
灰度 表示,越暗表示越大的数值,而其相应的梯度用蓝色箭头表示。
就像一元函数的导数表示这个函数图形 的切线 的斜率 [3] 
  
    
      
        P 
       
     
    {\displaystyle P} 
    方向 是这个函数在
  
    
      
        P 
       
     
    {\displaystyle P} 
    量 是在这个方向上的增长率[4] 
梯度向量中的幅值和方向是与坐标的选择无关的独立量[5] 
在欧几里德空间 或更一般的流形 之间的多元可微映射 的向量值函数的梯度推广是雅可比矩阵 [6] 巴拿赫空间 之间的函数的进一步推广是弗雷歇导数 。
 梯度的解释 
  将2D函数
f (x , y ) = xe −(x 2  + y 2 ) 的梯度绘制为蓝色箭头,还绘制了这个函数的伪色图。
假设有一个房间,房间内所有点的温度由一个标量场
  
    
      
        ϕ 
       
     
    {\displaystyle \phi } 
      
  
    
      
        ( 
        x 
        , 
        y 
        , 
        z 
        ) 
       
     
    {\displaystyle (x,y,z)} 
      
  
    
      
        ϕ 
        ( 
        x 
        , 
        y 
        , 
        z 
        ) 
       
     
    {\displaystyle \phi (x,y,z)} 
      
考虑一座高度在
  
    
      
        ( 
        x 
        , 
        y 
        ) 
       
     
    {\displaystyle (x,y)} 
      
  
    
      
        H 
        ( 
        x 
        , 
        y 
        ) 
       
     
    {\displaystyle H(x,y)} 
      
  
    
      
        H 
       
     
    {\displaystyle H} 
      坡度 (或者说斜度 )最陡的方向。梯度的大小告诉我们坡度到底有多陡。
梯度也可以告诉我们一个数量在不是最快变化方向的其他方向的变化速度。再次考虑山坡的例子。可以有条直接上山的路其坡度是最大的,则其坡度是梯度的大小。也可以有一条和上坡方向成一个角度的路,例如投影在水平面上的夹角为60°。则,若最陡的坡度是40%,这条路的坡度小一点,是20%,也就是40%乘以60°的余弦。
这个现象可以如下数学的表示。山的高度函数
  
    
      
        H 
       
     
    {\displaystyle H} 
      点积 一个单位向量 给出表面在该向量的方向上的斜率。这称为方向导数 。
 定义  
  将函数
f (x ,y ) = −(cos2 x  + cos2 y )2 的梯度描绘为在底面上投影的
向量场 。
标量函数 
  
    
      
        f 
        : 
        
          
            R 
           
          
            n 
           
         
        ↦ 
        
          R 
         
       
     
    {\displaystyle f\colon \mathbb {R} ^{n}\mapsto \mathbb {R} } 
      
  
    
      
        ∇ 
        f 
       
     
    {\displaystyle \nabla f} 
      
  
    
      
        grad 
         
        f 
       
     
    {\displaystyle \operatorname {grad} f} 
      
  
    
      
        ∇ 
       
     
    {\displaystyle \nabla } 
      nabla )表示向量微分算子 。
函数 
  
    
      
        f 
       
     
    {\displaystyle f} 
      
  
    
      
        ∇ 
        f 
       
     
    {\displaystyle \nabla f} 
      v 
  
    
      
        
          
            ( 
           
         
        ∇ 
        f 
        ( 
        x 
        ) 
        
          
            ) 
           
         
        ⋅ 
        
          v 
         
        = 
        
          D 
          
            
              v 
             
           
         
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle {\big (}\nabla f(x){\big )}\cdot \mathbf {v} =D_{\mathbf {v} }f(x)} 
      直角坐标系 
  
    
      
        ∇ 
        f 
       
     
    {\displaystyle \nabla f} 
      直角坐标系 中表示为
  
    
      
        ∇ 
        f 
        = 
        
          
            ( 
            
              
                
                  
                    
                      
                        ∂ 
                        f 
                       
                      
                        ∂ 
                        x 
                       
                     
                   
                  , 
                  
                    
                      
                        ∂ 
                        f 
                       
                      
                        ∂ 
                        y 
                       
                     
                   
                  , 
                  
                    
                      
                        ∂ 
                        f 
                       
                      
                        ∂ 
                        z 
                       
                     
                   
                 
               
             
            ) 
           
         
        = 
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              x 
             
           
         
        
          i 
         
        + 
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              y 
             
           
         
        
          j 
         
        + 
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              z 
             
           
         
        
          k 
         
       
     
    {\displaystyle \nabla f={\begin{pmatrix}{\frac {\partial f}{\partial x}},{\frac {\partial f}{\partial y}},{\frac {\partial f}{\partial z}}\end{pmatrix}}={\frac {\partial f}{\partial x}}\mathbf {i} +{\frac {\partial f}{\partial y}}\mathbf {j} +{\frac {\partial f}{\partial z}}\mathbf {k} } 
      i j k x y z 参看偏导数 和向量 。 )
虽然使用坐标表达,但结果是在正交变换 下不变,从几何的观点来看,这是应该的。
举例来讲,函数
  
    
      
        f 
        ( 
        x 
        , 
        y 
        , 
        z 
        ) 
        = 
        2 
        x 
        + 
        3 
        
          y 
          
            2 
           
         
        − 
        sin 
         
        ( 
        z 
        ) 
       
     
    {\displaystyle f(x,y,z)=2x+3y^{2}-\sin(z)} 
      
  
    
      
        ∇ 
        f 
        = 
        
          
            ( 
            
              
                
                  
                    2 
                   
                  , 
                  
                    6 
                    y 
                   
                  , 
                  
                    − 
                    cos 
                     
                    ( 
                    z 
                    ) 
                   
                 
               
             
            ) 
           
         
        = 
        2 
        
          i 
         
        + 
        6 
        y 
        
          j 
         
        − 
        cos 
         
        ( 
        z 
        ) 
        
          k 
         
       
     
    {\displaystyle \nabla f={\begin{pmatrix}{2},{6y},{-\cos(z)}\end{pmatrix}}=2\mathbf {i} +6y\mathbf {j} -\cos(z)\mathbf {k} } 
      圆柱坐标系 在圆柱坐标系 中,
  
    
      
        f 
       
     
    {\displaystyle f} 
      [7] 
  
    
      
        ∇ 
        f 
        ( 
        ρ 
        , 
        φ 
        , 
        z 
        ) 
        = 
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              ρ 
             
           
         
        
          
            e 
           
          
            ρ 
           
         
        + 
        
          
            1 
            ρ 
           
         
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              φ 
             
           
         
        
          
            e 
           
          
            φ 
           
         
        + 
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              z 
             
           
         
        
          
            e 
           
          
            z 
           
         
       
     
    {\displaystyle \nabla f(\rho ,\varphi ,z)={\frac {\partial f}{\partial \rho }}\mathbf {e} _{\rho }+{\frac {1}{\rho }}{\frac {\partial f}{\partial \varphi }}\mathbf {e} _{\varphi }+{\frac {\partial f}{\partial z}}\mathbf {e} _{z}} 
      ρ φ 投影线 与正 x-轴之间的夹角。
z 直角坐标 的 
  
    
      
        z 
       
     
    {\displaystyle z} 
      e ρ e φ e z 
球坐标系 在球坐标系 中:
  
    
      
        ∇ 
        f 
        ( 
        r 
        , 
        θ 
        , 
        φ 
        ) 
        = 
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              r 
             
           
         
        
          
            e 
           
          
            r 
           
         
        + 
        
          
            1 
            r 
           
         
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              θ 
             
           
         
        
          
            e 
           
          
            θ 
           
         
        + 
        
          
            1 
            
              r 
              sin 
               
              θ 
             
           
         
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              φ 
             
           
         
        
          
            e 
           
          
            φ 
           
         
       
     
    {\displaystyle \nabla f(r,\theta ,\varphi )={\frac {\partial f}{\partial r}}\mathbf {e} _{r}+{\frac {1}{r}}{\frac {\partial f}{\partial \theta }}\mathbf {e} _{\theta }+{\frac {1}{r\sin \theta }}{\frac {\partial f}{\partial \varphi }}\mathbf {e} _{\varphi }} 
      其中θ φ 
 实值函数相对于向量和矩阵的梯度 
相对于n×1向量x 的梯度算子记作
  
    
      
        
          ∇ 
          
            x 
           
         
       
     
    {\displaystyle \nabla _{\boldsymbol {x}}} 
      [8] 
  
    
      
        
          ∇ 
          
            x 
           
         
        
          
            = 
            
              
                d 
                e 
                f 
               
             
           
         
        
          
            [ 
            
              
                
                  ∂ 
                  
                    ∂ 
                    
                      x 
                      
                        1 
                       
                     
                   
                 
               
              , 
              
                
                  ∂ 
                  
                    ∂ 
                    
                      x 
                      
                        2 
                       
                     
                   
                 
               
              , 
              ⋯ 
              , 
              
                
                  ∂ 
                  
                    ∂ 
                    
                      x 
                      
                        n 
                       
                     
                   
                 
               
             
            ] 
           
          
            T 
           
         
        = 
        
          
            ∂ 
            
              ∂ 
              
                x 
               
             
           
         
       
     
    {\displaystyle \nabla _{\boldsymbol {x}}{\overset {\underset {\mathrm {def} }{}}{=}}\left[{\frac {\partial }{\partial x_{1}}},{\frac {\partial }{\partial x_{2}}},\cdots ,{\frac {\partial }{\partial x_{n}}}\right]^{T}={\frac {\partial }{\partial {\boldsymbol {x}}}}} 
      对向量的梯度 以n×1实向量x 为变元的实标量函数f(x )相对于x 的梯度为一n×1列向量x ,定义为
  
    
      
        
          ∇ 
          
            x 
           
         
        f 
        ( 
        
          x 
         
        ) 
        
          
            = 
            
              
                d 
                e 
                f 
               
             
           
         
        
          
            [ 
            
              
                
                  
                    ∂ 
                    f 
                    ( 
                    
                      x 
                     
                    ) 
                   
                  
                    ∂ 
                    
                      x 
                      
                        1 
                       
                     
                   
                 
               
              , 
              
                
                  
                    ∂ 
                    f 
                    ( 
                    
                      x 
                     
                    ) 
                   
                  
                    ∂ 
                    
                      x 
                      
                        2 
                       
                     
                   
                 
               
              , 
              ⋯ 
              , 
              
                
                  
                    ∂ 
                    f 
                    ( 
                    
                      x 
                     
                    ) 
                   
                  
                    ∂ 
                    
                      x 
                      
                        n 
                       
                     
                   
                 
               
             
            ] 
           
          
            T 
           
         
        = 
        
          
            
              ∂ 
              f 
              ( 
              
                x 
               
              ) 
             
            
              ∂ 
              
                x 
               
             
           
         
       
     
    {\displaystyle \nabla _{\boldsymbol {x}}f({\boldsymbol {x}}){\overset {\underset {\mathrm {def} }{}}{=}}\left[{\frac {\partial f({\boldsymbol {x}})}{\partial x_{1}}},{\frac {\partial f({\boldsymbol {x}})}{\partial x_{2}}},\cdots ,{\frac {\partial f({\boldsymbol {x}})}{\partial x_{n}}}\right]^{T}={\frac {\partial f({\boldsymbol {x}})}{\partial {\boldsymbol {x}}}}} 
      m维行向量函数
  
    
      
        
          f 
         
        ( 
        
          x 
         
        ) 
        = 
        [ 
        
          f 
          
            1 
           
         
        ( 
        
          x 
         
        ) 
        , 
        
          f 
          
            2 
           
         
        ( 
        
          x 
         
        ) 
        , 
        ⋯ 
        , 
        
          f 
          
            m 
           
         
        ( 
        
          x 
         
        ) 
        ] 
       
     
    {\displaystyle {\boldsymbol {f}}({\boldsymbol {x}})=[f_{1}({\boldsymbol {x}}),f_{2}({\boldsymbol {x}}),\cdots ,f_{m}({\boldsymbol {x}})]} 
      x 的梯度为一n×m矩阵,定义为
  
    
      
        
          ∇ 
          
            x 
           
         
        
          f 
         
        ( 
        
          x 
         
        ) 
        
          
            = 
            
              
                d 
                e 
                f 
               
             
           
         
        
          
            [ 
            
              
                
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            1 
                           
                         
                        ( 
                        
                          x 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          x 
                          
                            1 
                           
                         
                       
                     
                   
                 
                
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            2 
                           
                         
                        ( 
                        
                          x 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          x 
                          
                            1 
                           
                         
                       
                     
                   
                 
                
                  ⋯ 
                 
                
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            m 
                           
                         
                        ( 
                        
                          x 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          x 
                          
                            1 
                           
                         
                       
                     
                   
                 
               
              
                
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            1 
                           
                         
                        ( 
                        
                          x 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          x 
                          
                            2 
                           
                         
                       
                     
                   
                 
                
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            2 
                           
                         
                        ( 
                        
                          x 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          x 
                          
                            2 
                           
                         
                       
                     
                   
                 
                
                  ⋯ 
                 
                
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            m 
                           
                         
                        ( 
                        
                          x 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          x 
                          
                            2 
                           
                         
                       
                     
                   
                 
               
              
                
                  ⋮ 
                 
                
                  ⋮ 
                 
                
                  ⋱ 
                 
                
                  ⋮ 
                 
               
              
                
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            1 
                           
                         
                        ( 
                        
                          x 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          x 
                          
                            n 
                           
                         
                       
                     
                   
                 
                
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            2 
                           
                         
                        ( 
                        
                          x 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          x 
                          
                            n 
                           
                         
                       
                     
                   
                 
                
                  ⋯ 
                 
                
                  
                    
                      
                        ∂ 
                        
                          f 
                          
                            m 
                           
                         
                        ( 
                        
                          x 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          x 
                          
                            n 
                           
                         
                       
                     
                   
                 
               
             
            ] 
           
         
        = 
        
          
            
              ∂ 
              
                f 
               
              ( 
              
                x 
               
              ) 
             
            
              ∂ 
              
                x 
               
             
           
         
       
     
    {\displaystyle \nabla _{\boldsymbol {x}}{\boldsymbol {f}}({\boldsymbol {x}}){\overset {\underset {\mathrm {def} }{}}{=}}{\begin{bmatrix}{\frac {\partial f_{1}({\boldsymbol {x}})}{\partial x_{1}}}&{\frac {\partial f_{2}({\boldsymbol {x}})}{\partial x_{1}}}&\cdots &{\frac {\partial f_{m}({\boldsymbol {x}})}{\partial x_{1}}}\\{\frac {\partial f_{1}({\boldsymbol {x}})}{\partial x_{2}}}&{\frac {\partial f_{2}({\boldsymbol {x}})}{\partial x_{2}}}&\cdots &{\frac {\partial f_{m}({\boldsymbol {x}})}{\partial x_{2}}}\\\vdots &\vdots &\ddots &\vdots \\{\frac {\partial f_{1}({\boldsymbol {x}})}{\partial x_{n}}}&{\frac {\partial f_{2}({\boldsymbol {x}})}{\partial x_{n}}}&\cdots &{\frac {\partial f_{m}({\boldsymbol {x}})}{\partial x_{n}}}\\\end{bmatrix}}={\frac {\partial {\boldsymbol {f}}({\boldsymbol {x}})}{\partial {\boldsymbol {x}}}}} 
      对矩阵的梯度 标量函数
  
    
      
        f 
        ( 
        
          A 
         
        ) 
       
     
    {\displaystyle f({\boldsymbol {A}})} 
      A 的梯度为一m×n矩阵,简称梯度矩阵,定义为
  
    
      
        
          ∇ 
          
            A 
           
         
        f 
        ( 
        
          A 
         
        ) 
        
          
            = 
            
              
                d 
                e 
                f 
               
             
           
         
        
          
            [ 
            
              
                
                  
                    
                      
                        ∂ 
                        f 
                        ( 
                        
                          A 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          a 
                          
                            11 
                           
                         
                       
                     
                   
                 
                
                  
                    
                      
                        ∂ 
                        f 
                        ( 
                        
                          A 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          a 
                          
                            12 
                           
                         
                       
                     
                   
                 
                
                  ⋯ 
                 
                
                  
                    
                      
                        ∂ 
                        f 
                        ( 
                        
                          A 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          a 
                          
                            1 
                            n 
                           
                         
                       
                     
                   
                 
               
              
                
                  
                    
                      
                        ∂ 
                        f 
                        ( 
                        
                          A 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          a 
                          
                            21 
                           
                         
                       
                     
                   
                 
                
                  
                    
                      
                        ∂ 
                        f 
                        ( 
                        
                          A 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          a 
                          
                            22 
                           
                         
                       
                     
                   
                 
                
                  ⋯ 
                 
                
                  
                    
                      
                        ∂ 
                        f 
                        ( 
                        
                          A 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          a 
                          
                            2 
                            n 
                           
                         
                       
                     
                   
                 
               
              
                
                  ⋮ 
                 
                
                  ⋮ 
                 
                
                  ⋱ 
                 
                
                  ⋮ 
                 
               
              
                
                  
                    
                      
                        ∂ 
                        f 
                        ( 
                        
                          A 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          a 
                          
                            m 
                            1 
                           
                         
                       
                     
                   
                 
                
                  
                    
                      
                        ∂ 
                        f 
                        ( 
                        
                          A 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          a 
                          
                            m 
                            2 
                           
                         
                       
                     
                   
                 
                
                  ⋯ 
                 
                
                  
                    
                      
                        ∂ 
                        f 
                        ( 
                        
                          A 
                         
                        ) 
                       
                      
                        ∂ 
                        
                          a 
                          
                            m 
                            n 
                           
                         
                       
                     
                   
                 
               
             
            ] 
           
         
        = 
        
          
            
              ∂ 
              
                f 
               
              ( 
              
                A 
               
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
       
     
    {\displaystyle \nabla _{\boldsymbol {A}}f({\boldsymbol {A}}){\overset {\underset {\mathrm {def} }{}}{=}}{\begin{bmatrix}{\frac {\partial f({\boldsymbol {A}})}{\partial a_{11}}}&{\frac {\partial f({\boldsymbol {A}})}{\partial a_{12}}}&\cdots &{\frac {\partial f({\boldsymbol {A}})}{\partial a_{1n}}}\\{\frac {\partial f({\boldsymbol {A}})}{\partial a_{21}}}&{\frac {\partial f({\boldsymbol {A}})}{\partial a_{22}}}&\cdots &{\frac {\partial f({\boldsymbol {A}})}{\partial a_{2n}}}\\\vdots &\vdots &\ddots &\vdots \\{\frac {\partial f({\boldsymbol {A}})}{\partial a_{m1}}}&{\frac {\partial f({\boldsymbol {A}})}{\partial a_{m2}}}&\cdots &{\frac {\partial f({\boldsymbol {A}})}{\partial a_{mn}}}\\\end{bmatrix}}={\frac {\partial {\boldsymbol {f}}({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}} 
      法则 以下法则适用于实标量函数对向量的梯度以及对矩阵的梯度。
线性法则:若
  
    
      
        f 
        ( 
        
          A 
         
        ) 
       
     
    {\displaystyle f({\boldsymbol {A}})} 
      
  
    
      
        g 
        ( 
        
          A 
         
        ) 
       
     
    {\displaystyle g({\boldsymbol {A}})} 
      1 和c2 为实常数,则
  
    
      
        
          
            
              ∂ 
              [ 
              
                c 
                
                  1 
                 
               
              f 
              ( 
              
                A 
               
              ) 
              + 
              
                c 
                
                  2 
                 
               
              g 
              ( 
              
                A 
               
              ) 
              ] 
             
            
              ∂ 
              
                A 
               
             
           
         
        = 
        
          c 
          
            1 
           
         
        
          
            
              ∂ 
              f 
              ( 
              
                A 
               
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
        + 
        
          c 
          
            2 
           
         
        
          
            
              ∂ 
              g 
              ( 
              
                A 
               
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
       
     
    {\displaystyle {\frac {\partial [c_{1}f({\boldsymbol {A}})+c_{2}g({\boldsymbol {A}})]}{\partial {\boldsymbol {A}}}}=c_{1}{\frac {\partial f({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}+c_{2}{\frac {\partial g({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}} 
       乘积法则:若
  
    
      
        f 
        ( 
        
          A 
         
        ) 
       
     
    {\displaystyle f({\boldsymbol {A}})} 
      
  
    
      
        g 
        ( 
        
          A 
         
        ) 
       
     
    {\displaystyle g({\boldsymbol {A}})} 
      
  
    
      
        h 
        ( 
        
          A 
         
        ) 
       
     
    {\displaystyle h({\boldsymbol {A}})} 
      
  
    
      
        
          
            
              ∂ 
              f 
              ( 
              
                A 
               
              ) 
              g 
              ( 
              
                A 
               
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
        = 
        g 
        ( 
        
          A 
         
        ) 
        
          
            
              ∂ 
              f 
              ( 
              
                A 
               
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
        + 
        f 
        ( 
        
          A 
         
        ) 
        
          
            
              ∂ 
              g 
              ( 
              
                A 
               
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
       
     
    {\displaystyle {\frac {\partial f({\boldsymbol {A}})g({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}=g({\boldsymbol {A}}){\frac {\partial f({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}+f({\boldsymbol {A}}){\frac {\partial g({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}} 
      
  
    
      
        
          
            
              ∂ 
              f 
              ( 
              
                A 
               
              ) 
              g 
              ( 
              
                A 
               
              ) 
              h 
              ( 
              
                A 
               
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
        = 
        g 
        ( 
        
          A 
         
        ) 
        h 
        ( 
        
          A 
         
        ) 
        
          
            
              ∂ 
              f 
              ( 
              
                A 
               
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
        + 
        f 
        ( 
        
          A 
         
        ) 
        h 
        ( 
        
          A 
         
        ) 
        
          
            
              ∂ 
              g 
              ( 
              
                A 
               
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
        + 
        f 
        ( 
        
          A 
         
        ) 
        g 
        ( 
        
          A 
         
        ) 
        
          
            
              ∂ 
              h 
              ( 
              
                A 
               
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
       
     
    {\displaystyle {\frac {\partial f({\boldsymbol {A}})g({\boldsymbol {A}})h({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}=g({\boldsymbol {A}})h({\boldsymbol {A}}){\frac {\partial f({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}+f({\boldsymbol {A}})h({\boldsymbol {A}}){\frac {\partial g({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}+f({\boldsymbol {A}})g({\boldsymbol {A}}){\frac {\partial h({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}} 
       商法则:若
  
    
      
        g 
        ( 
        
          A 
         
        ) 
        ≠ 
        0 
       
     
    {\displaystyle g({\boldsymbol {A}})\neq 0} 
      
  
    
      
        
          
            
              ∂ 
              f 
              ( 
              
                A 
               
              ) 
              
                / 
               
              g 
              ( 
              
                A 
               
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
        = 
        
          
            1 
            
              g 
              ( 
              
                A 
               
              
                ) 
                
                  2 
                 
               
             
           
         
        
          [ 
          
            g 
            ( 
            
              A 
             
            ) 
            
              
                
                  ∂ 
                  f 
                  ( 
                  
                    A 
                   
                  ) 
                 
                
                  ∂ 
                  
                    A 
                   
                 
               
             
            − 
            f 
            ( 
            
              A 
             
            ) 
            
              
                
                  ∂ 
                  g 
                  ( 
                  
                    A 
                   
                  ) 
                 
                
                  ∂ 
                  
                    A 
                   
                 
               
             
           
          ] 
         
       
     
    {\displaystyle {\frac {\partial f({\boldsymbol {A}})/g({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}={\frac {1}{g({\boldsymbol {A}})^{2}}}\left[g({\boldsymbol {A}}){\frac {\partial f({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}-f({\boldsymbol {A}}){\frac {\partial g({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}\right]} 
       链式法则:若A 为m×n矩阵,且
  
    
      
        y 
        = 
        f 
        ( 
        
          A 
         
        ) 
       
     
    {\displaystyle y=f({\boldsymbol {A}})} 
      
  
    
      
        g 
        ( 
        y 
        ) 
       
     
    {\displaystyle g(y)} 
      A 和标量y为变元的实标量函数,则
  
    
      
        
          
            
              ∂ 
              g 
              ( 
              f 
              ( 
              
                A 
               
              ) 
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
        = 
        
          
            
              d 
              g 
              ( 
              y 
              ) 
             
            
              d 
              y 
             
           
         
        
          
            
              ∂ 
              f 
              ( 
              
                A 
               
              ) 
             
            
              ∂ 
              
                A 
               
             
           
         
       
     
    {\displaystyle {\frac {\partial g(f({\boldsymbol {A}}))}{\partial {\boldsymbol {A}}}}={\frac {dg(y)}{dy}}{\frac {\partial f({\boldsymbol {A}})}{\partial {\boldsymbol {A}}}}} 
        流形上的梯度 
一个黎曼流形 
  
    
      
        M 
       
     
    {\displaystyle M} 
      
  
    
      
        f 
       
     
    {\displaystyle f} 
      
  
    
      
        ∇ 
        f 
       
     
    {\displaystyle \nabla f} 
      向量场 ,使得对于每个向量  
  
    
      
        ξ 
       
     
    {\displaystyle \xi } 
      
  
    
      
        ⟨ 
        ∇ 
        f 
        , 
        ξ 
        ⟩ 
        := 
        ξ 
        f 
       
     
    {\displaystyle \langle \nabla f,\xi \rangle :=\xi f} 
      其中
  
    
      
        ⟨ 
        ⋅ 
        , 
        ⋅ 
        ⟩ 
       
     
    {\displaystyle \langle \cdot ,\cdot \rangle } 
      
  
    
      
        M 
       
     
    {\displaystyle M} 
      内积 (度量)而
  
    
      
        ξ 
        f 
        ( 
        p 
        ) 
        , 
        p 
        ∈ 
        M 
       
     
    {\displaystyle \xi f(p),p\in M} 
      
  
    
      
        f 
       
     
    {\displaystyle f} 
      
  
    
      
        p 
       
     
    {\displaystyle p} 
      
  
    
      
        ξ 
        ( 
        p 
        ) 
       
     
    {\displaystyle \xi (p)} 
      方向导数 。换句话说,如果
  
    
      
        φ 
        : 
        U 
        ⊆ 
        M 
        ↦ 
        
          
            R 
           
          
            n 
           
         
       
     
    {\displaystyle \varphi :U\subseteq M\mapsto \mathbb {R} ^{n}} 
      
  
    
      
        p 
       
     
    {\displaystyle p} 
      
  
    
      
        ξ 
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            j 
           
         
        
          a 
          
            j 
           
         
        ( 
        x 
        ) 
        
          
            ∂ 
            
              ∂ 
              
                x 
                
                  j 
                 
               
             
           
         
       
     
    {\displaystyle \xi (x)=\sum _{j}a_{j}(x){\frac {\partial }{\partial x_{j}}}} 
      
  
    
      
        ξ 
        f 
        ( 
        p 
        ) 
       
     
    {\displaystyle \xi f(p)} 
      
  
    
      
        ξ 
        ( 
        f 
        
          ∣ 
          
            p 
           
         
        ) 
        := 
        
          ∑ 
          
            j 
           
         
        
          a 
          
            j 
           
         
        ( 
        
          
            ∂ 
            
              ∂ 
              
                x 
                
                  j 
                 
               
             
           
         
        ( 
        f 
        ∘ 
        
          φ 
          
            − 
            1 
           
         
        ) 
        
          ∣ 
          
            φ 
            ( 
            p 
            ) 
           
         
        ) 
       
     
    {\displaystyle \xi (f\mid _{p}):=\sum _{j}a_{j}({\frac {\partial }{\partial x_{j}}}(f\circ \varphi ^{-1})\mid _{\varphi (p)})} 
      函数的梯度和外微分 相关,因为
  
    
      
        ξ 
        f 
        = 
        d 
        f 
        ( 
        ξ 
        ) 
       
     
    {\displaystyle \xi f=df(\xi )} 
      
  
    
      
        d 
        f 
       
     
    {\displaystyle df} 
      
  
    
      
        ∇ 
        f 
       
     
    {\displaystyle \nabla f} 
      
  
    
      
        ∇ 
        f 
       
     
    {\displaystyle \nabla f} 
      
  
    
      
        d 
        f 
        ( 
        ξ 
        ) 
        = 
        ⟨ 
        ∇ 
        f 
        , 
        ξ 
        ⟩ 
       
     
    {\displaystyle df(\xi )=\langle \nabla f,\xi \rangle } 
      
  
    
      
        f 
       
     
    {\displaystyle f} 
      
  
    
      
        d 
        f 
       
     
    {\displaystyle df} 
      
  
    
      
        { 
        d 
        f 
        } 
       
     
    {\displaystyle \{df\}} 
      
  
    
      
        { 
        ∇ 
        f 
        } 
       
     
    {\displaystyle \{\nabla f\}} 
      满射 。
由定义可算流形 
  
    
      
        ∇ 
        f 
       
     
    {\displaystyle \nabla f} 
      
  
    
      
        ∇ 
        f 
        = 
        
          ∑ 
          
            i 
            k 
           
         
        
          g 
          
            i 
            k 
           
         
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              
                x 
                
                  k 
                 
               
             
           
         
        
          
            ∂ 
            
              ∂ 
              
                x 
                
                  i 
                 
               
             
           
         
       
     
    {\displaystyle \nabla f=\sum _{ik}g^{ik}{\frac {\partial f}{\partial x^{k}}}{\frac {\partial }{\partial x^{i}}}} 
      请注意这是流形 
  
    
      
        d 
        
          s 
          
            2 
           
         
        = 
        
          ∑ 
          
            i 
            j 
           
         
        
          g 
          
            i 
            j 
           
         
        d 
        
          x 
          
            i 
           
         
        d 
        
          x 
          
            j 
           
         
       
     
    {\displaystyle ds^{2}=\sum _{ij}g_{ij}dx^{i}dx^{j}} 
      
  
    
      
        
          
            R 
           
          
            n 
           
         
       
     
    {\displaystyle \mathbb {R} ^{n}} 
      
  
    
      
        ∑ 
       
     
    {\displaystyle \sum } 
      
 参看 参考文献 
引用 
^ Beauregard & Fraleigh (1973 , p. 84)^ Bachman (2007 , p. 76)Beauregard & Fraleigh (1973 , p. 84)Downing (2010 , p. 316)Harper (1976 , p. 15)Kreyszig (1972 , p. 307)McGraw-Hill (2007 , p. 196)Moise (1967 , p. 683)Protter & Morrey, Jr. (1970 , p. 714)Swokowski et al. (1994 , p. 1038)^ Protter & Morrey, Jr. (1970 , pp. 21,88)^ Bachman (2007 , p. 77)Downing (2010 , pp. 316–317)Kreyszig (1972 , p. 309)McGraw-Hill (2007 , p. 196)Moise (1967 , p. 684)Protter & Morrey, Jr. (1970 , p. 715)Swokowski et al. (1994 , pp. 1036,1038–1039)^ Kreyszig (1972 , pp. 308–309)Stoker (1969 , p. 292)^ Beauregard & Fraleigh (1973 , pp. 87,248)Kreyszig (1972 , pp. 333,353,496)^ Schey 1992 ,第139–142页.^ 张贤达 (2004 , p. 258) 
来源 
书籍 Bachman, David, Advanced Calculus Demystified, New York: McGraw-Hill , 2007, ISBN  0-07-148121-4   Beauregard, Raymond A.; Fraleigh, John B., A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Company ISBN  0-395-14017-X   Downing, Douglas, Ph.D., Barron's E-Z Calculus, New York: Barron's ISBN  978-0-7641-4461-5   Dubrovin, B. A.; Fomenko, A. T.; Novikov, S. P. Modern Geometry—Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields. Graduate Texts in Mathematics  2nd. Springer. 1991. ISBN  978-0-387-97663-1   Harper, Charlie, Introduction to Mathematical Physics, New Jersey: Prentice-Hall , 1976, ISBN  0-13-487538-9   Kreyszig, Erwin , Advanced Engineering Mathematics 3rd, New York: Wiley , 1972, ISBN  0-471-50728-8  McGraw-Hill Encyclopedia of Science & Technology 10th. New York: McGraw-Hill . 2007. ISBN  0-07-144143-3   Moise, Edwin E., Calculus:  Complete, Reading: Addison-Wesley , 1967   Protter, Murray H.; Morrey, Jr., Charles B., College Calculus with Analytic Geometry 2nd, Reading: Addison-Wesley , 1970, LCCN 76087042    Schey, H. M. Div, Grad, Curl, and All That  2nd. W. W. Norton. 1992. ISBN  0-393-96251-2OCLC 25048561    Stoker, J. J., Differential Geometry, New York: Wiley , 1969, ISBN  0-471-82825-4   Swokowski, Earl W.; Olinick, Michael; Pence, Dennis; Cole, Jeffery A., Calculus 6th, Boston: PWS Publishing Company, 1994, ISBN  0-534-93624-5   张贤达 , 《矩阵分析与应用》, 清华大学出版社, 2004, ISBN  9787302092711(中文(中国大陆))