钱珀瑙恩数
此条目需要扩充。 (2013年2月14日) |
钱珀瑙恩数(Champernowne constant)C10是一个实数的超越数,其十进制表示法有重要的特性,得名自数学家D. G.钱珀瑙恩,在1933年以本科生(剑桥大学)的身份发表有关钱珀瑙恩数的论文。
在十进制下,可以用连续整数来定义钱珀瑙恩数:
也可以定义其他进制系统下的钱珀瑙恩数:
钱珀瑙恩字(Champernowne word)或是巴比尔字(Barbier word)是指由Ck各位数形成的数列[1][2]。
十进制下的钱珀瑙恩数C10为正规数,是每个数字出现机会均等的实数。
相关条目
参考资料
- ^ Cassaigne & Nicolas (2010) p.165
- ^ *Allouche, Jean-Paul; Shallit, Jeffrey. Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press. 2003: 299. ISBN 978-0-521-82332-6. Zbl 1086.11015.
- Cassaigne, J.; Nicolas, F. Factor complexity. Berthé, Valérie; Rigo, Michel (编). Combinatorics, automata, and number theory. Encyclopedia of Mathematics and its Applications 135. Cambridge: Cambridge University Press. 2010: 163–247. ISBN 978-0-521-51597-9. Zbl 1216.68204.
外部链接
- 埃里克·韦斯坦因. Champernowne constant. MathWorld.
- The fantastic pencil and the Champernowne constant (页面存档备份,存于互联网档案馆)