圆内接多边形

几何学中,圆内接多边形是指存在外接圆多边形,且该外接圆能使多边形的所有顶点都位于该边界上,换句话说若这个多边形的所有顶点都能位于同一个圆上,则可称其为圆内接多边形。所有的三角形都是圆内接多边形,而四边形以上的多边形则不一定。若一四边形的四个顶点都在同一个圆上则称为圆内接四边形

一个圆内接五边形

圆内接多边形的对偶多边形为圆外切多边形。此外,所有正多边形都是圆内接多边形。

性质

若一个奇数边数的圆内接多边形,若其所有角度都相等时,则其为正多边形,反之亦然。而若圆内接多边形的边数为偶数,且其所有角度都相等时,则其棱会交错相等,反之亦然[1]

圆内接五边形

 
一个面积为7392的罗宾斯五边形英语Robbins pentagon

若一圆内接五边形的边长和面积皆为有理数,该五边形称为罗宾斯五边形英语Robbins pentagon。目前已知的所有罗宾斯五边形对角线长也皆为有理数[2]

圆内接四边形

在一个圆内接四边形中,相对的两内角是互补的,它们度数之和为180[3]。与此等价的说法是,圆内接四边形的一个内角等于其相对面的角的外角。相对的两内角互补是圆内接四边形的充分必要条件,即,圆内接四边形相对的两内角互补,且相对的两内角互补的四边形是圆内接四边形(四边形四顶点共圆或说有四边形有外接圆)。

点到顶点顶点距离

设A为圆内接多边形,其为一个n边形,而其顶点分别为A1 , ..., An,并位于单位圆上,则对位于弧A1An上的任意点M,从顶点到M的距离满足[4]:p.190,#332.10

 

参见

参考文献

  1. ^ De Villiers, Michael. "Equiangular cyclic and equilateral circumscribed polygons," Mathematical Gazette 95, March 2011, 102-107.
  2. ^ Buchholz, Ralph H.; MacDougall, James A., Cyclic polygons with rational sides and area, Journal of Number Theory, 2008, 128 (1): 17–48 [2018-11-18], MR 2382768, doi:10.1016/j.jnt.2007.05.005, (原始内容存档于2018-11-12) .
  3. ^ 欧几里得,《几何原本》第三章,命题22页面存档备份,存于互联网档案馆
  4. ^ Inequalities proposed in “Crux Mathematicorum, [1]页面存档备份,存于互联网档案馆).

外部链接