在数学中,闵可夫斯基不等式(Minkowski inequality)表明Lp空间是一个赋范向量空间。设
是一个测度空间,
,那么
,我们有:

如果
,等号成立当且仅当
,或者
.
闵可夫斯基不等式是
中的三角不等式。它可以用赫尔德不等式来证明。和赫尔德不等式一样,闵可夫斯基不等式取可数测度可以写成序列或向量的特殊形式:

将所有实数
(
为
的维数)改成复数同样成立。
值得指出的是,如果
,
,则
可以变为
.
积分形式的证明
我们考虑 的 次幂:
(用三角形不等式展开 )
(用赫尔德不等式)
(利用 ,因为 )
现在我们考虑这个不等式序列的首尾两项。首项除以尾项的最后一个因子,即得
这正是我们所要的结论。
对于序列的情形,证明是完全类似的。
参阅
参考文献