算术-几何平均值不等式

算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现算术平均数几何平均数之间恒定的不等关系。设 个正实数,它们的算术平均数,它们的几何平均数。算术-几何平均值不等式表明,对任意的正实数

等号成立当且仅当

通常用于两个数之间,设这两个数为,也就是

算术-几何平均值不等式仅适用于正实数,是对数函数凹性的体现,在数学自然科学工程科学以及经济学等其它学科都有应用。

算术-几何平均值不等式有时被称为平均值不等式(或均值不等式),其实后者是一组更广泛的不等式。

例子

  的情况,设: ,那么

 

可见 

历史上的证明

历史上,算术-几何平均值不等式拥有众多证明。 的情况很早就为人所知,但对于一般的  ,不等式并不容易证明。1729年,英国数学家麦克劳林最早给出一般情况的证明,用的是调整法,然而这个证明并不严谨,是错误的。

柯西的证明

1821年,法国数学家柯西在他的著作《分析教程》中给出一个使用逆向归纳法的证明[1]

命题 :对任意的   个正实数  

  时, 显然成立。假设   成立,那么   成立。证明:对于  个正实数 

 
 
 

假设 成立,那么 成立。证明:对于  个正实数 ,设  ,那么由于 成立,  

但是   ,因此上式正好变成

 

也就是说 

综上可以得到结论:对任意的自然数  ,命题   都成立。这是因为由前两条可以得到:对任意的自然数  ,命题   都成立。因此对任意的  ,可以先找   使得  ,再结合第三条就可以得到命题   成立了。

归纳法的证明

使用常规数学归纳法的证明则有乔治·克里斯托英语George Chrystal(George Chrystal)在其著作《代数论》(Algebra)的第二卷中给出的[2]

由对称性不妨设    中最大的,由于   ,设  ,则  ,并且有  

根据二项式定理

 
 

于是完成了从    的证明。

此外还有更简洁的归纳法证明[3]

  的情况下有不等式    成立,于是:

 

所以  ,从而有 

基于琴生不等式的证明

注意到几何平均数  实际上等于  ,因此算术-几何平均不等式等价于:

 

由于对数函数是一个凹函数,由琴生不等式可知上式成立。

基于排序不等式的证明

 ,于是有  ,再作代换  ,运用排序不等式得到:

 

于是得到  ,即原不等式成立。

此外还有基于伯努利不等式或借助调整法、辅助函数求导和加强命题的证明。

推广

算术-几何平均不等式有很多不同形式的推广。

加权算术-几何平均不等式

不仅“均匀”的算术平均数和几何平均数之间有不等式,加权的算术平均数和几何平均数之间也有不等式。设    为正实数,并且  ,那么:

 

加权算术-几何平均不等式可以由琴生不等式得到。

矩阵形式

算术-几何平均不等式可以看成是一维向量的系数的平均数不等式。对于二维的矩阵,一样有类似的不等式: 对于系数都是正实数的矩阵

 

  ,那么有:

 

也就是说:对   个纵列取算术平均数,它们的几何平均小于等于对   个横行取的   个几何平均数的算术平均。

极限形式

也称为积分形式:对任意在区间 上可积的正值函数  ,都有

 

这实际上是在算术-几何平均值不等式取成   后,将两边的黎曼和中的   趋于无穷大后得到的形式。

算数-几何-调和平均值不等式

若再规定 的调和平均数  

则有

 

且等号依旧成立当且仅当  

证明由算数-几何平均值不等式知

 

 

 

且等号成立于

 

 

参见

参考来源

  1. ^ Augustin-Louis Cauchy, Cours d'analyse de l'École Royale Polytechnique, premier partie, Analyse algébrique,页面存档备份,存于互联网档案馆) Paris, 1821. p457.
  2. ^ George Chrystal, Algebra:An Elementary Text-Book, Part II页面存档备份,存于互联网档案馆), Chapter XXIV.p46.
  3. ^ P. H. Diananda , A Simple Proof of the Arithmetic Mean Geometric Mean Inequality ,The American Mathematical Monthly, Vol. 67, No. 10 (Dec., 1960), pp. 1007
  • 匡继昌,《常用不等式》,山东科技出版社。
  • 李胜宏,《平均不等式与柯西不等式》,华东师大出版社。
  • 莫里斯·克莱因(Morris Kline),张理京 张锦炎 江泽涵 译,《古今数学思想》,上海科学技术出版社。
  • 李兴怀,《学科奥林匹克丛书·高中数学》,广东教育出版社。