棣莫弗公式 棣莫弗公式是一个关于复数和三角函数的公式,命名自法国数学家亚伯拉罕·棣莫弗(1667年-1754年)。其内容为对任意实数 x {\displaystyle x} 和整数 n {\displaystyle n} ,下列性质成立: 复平面上的立方根等于1. ( cos ( x ) + i sin ( x ) ) n = cos ( n x ) + i sin ( n x ) {\displaystyle \left(\cos(x)+i\sin(x)\right)^{n}=\cos(nx)+i\sin(nx)} 其中 i {\displaystyle i} 是虚数单位( i 2 = − 1 {\displaystyle i^{2}=-1} )。值得注意的是,尽管本公式以棣莫弗本人命名,他从未直接地将其发表过[1]。为了方便起见,我们常常将 cos x + i sin x {\displaystyle \cos x+i\sin x} 合并为另一个三角函数cis(x),也就是说: cis n ( x ) = cis ( n x ) {\displaystyle \operatorname {cis} ^{n}(x)=\operatorname {cis} (nx)} 在操作上,我们常常限制 x {\displaystyle x} 属于实数,这样一来就可借由比较虚部与实部的方式把 cos ( n x ) {\displaystyle \cos(nx)} 和 sin ( n x ) {\displaystyle \sin(nx)} 变化为 cos x {\displaystyle \cos x} 和 sin x {\displaystyle \sin x} 的形式。另外,尽管棣莫弗公式限制 n {\displaystyle n} 须为整数,但倘若适当推广本公式,便可将 n {\displaystyle n} 拓展到非整数的领域。 目录 1 证明 2 检验 3 用棣莫弗公式求根 4 参考文献 5 参考资料 证明 (证明的思路是用数学归纳法证明正整数的情形,并推广到负整数。) 令 P ( n ) = ( cos θ + i sin θ ) n = cos ( n θ ) + i sin ( n θ ) , n ∈ N {\displaystyle P(n)=(\cos \theta +i\sin \theta )^{n}=\cos(n\theta )+i\sin(n\theta ),n\in \mathbb {N} } (1)当 n = 0 {\displaystyle n=0} 时,显然成立。 (2)当 n = 1 {\displaystyle n=1} 时: 左式 = ( cos θ + i sin θ ) 1 = cos θ + i sin θ = cos ( 1 ⋅ θ ) + i sin ( 1 ⋅ θ ) = {\displaystyle =(\cos \theta +i\sin \theta )^{1}=\cos \theta +i\sin \theta =\cos(1\cdot \theta )+i\sin(1\cdot \theta )=} 右式 因此, P ( 1 ) {\displaystyle P(1)} 成立。 (3)当 n > 1 {\displaystyle n>1} 时: 假设 P ( k ) {\displaystyle P(k)} 成立,即 ( cos θ + i sin θ ) k = cos ( k θ ) + i sin ( k θ ) {\displaystyle (\cos \theta +i\sin \theta )^{k}=\cos(k\theta )+i\sin(k\theta )} 当 n = k + 1 {\displaystyle n=k+1} 时: ( cos θ + i sin θ ) k + 1 = ( cos θ + i sin θ ) k ⋅ ( cos θ + i sin θ ) = ( cos k θ + i sin k θ ) ⋅ ( cos θ + i sin θ ) = ( cos k θ ⋅ cos θ + i sin k θ ⋅ i sin θ ) + ( cos k θ ⋅ i sin θ + i sin k θ ⋅ cos θ ) = ( cos k θ ⋅ cos θ − sin k θ ⋅ sin θ ) + i ( cos k θ ⋅ sin θ + sin k θ ⋅ cos θ ) = 1 cos ( k θ + θ ) + i sin ( k θ + θ ) = cos [ ( k + 1 ) θ ] + i sin [ ( k + 1 ) θ ] {\displaystyle {\begin{aligned}(\cos \theta +i\sin \theta )^{k+1}&=(\cos \theta +i\sin \theta )^{k}\cdot (\cos \theta +i\sin \theta )\\&=(\cos k\theta +i\sin k\theta )\cdot (\cos \theta +i\sin \theta )\\&=(\cos k\theta \cdot \cos \theta +i\sin k\theta \cdot i\sin \theta )+(\cos k\theta \cdot i\sin \theta +i\sin k\theta \cdot \cos \theta )\\&=(\cos k\theta \cdot \cos \theta -\sin k\theta \cdot \sin \theta )+i(\cos k\theta \cdot \sin \theta +\sin k\theta \cdot \cos \theta )\\&\ {\overset {1}{=}}\cos(k\theta +\theta )+i\sin(k\theta +\theta )\\&\ =\cos[(k+1)\theta ]+i\sin[(k+1)\theta ]\\\end{aligned}}} 等号1处使用和角公式。 因此, P ( k + 1 ) {\displaystyle P(k+1)} 也成立。 综上所述,根据数学归纳法, ∀ n ∈ N {\displaystyle \forall n\in \mathbb {N} } , P ( n ) {\displaystyle P(n)} 成立。 另外,由恒等式: ( cos ( n θ ) + i sin ( n θ ) ) ⋅ ( cos ( − n θ ) + i sin ( − n θ ) ) = 1 {\displaystyle (\cos(n\theta )+i\sin(n\theta ))\cdot (\cos(-n\theta )+i\sin(-n\theta ))=1} 可知,公式对于负整数情况也成立。 证毕。 检验 请注意:由于欧拉公式的证明过程中使用了棣莫弗公式,应用欧拉公式证明会造成循环论证,故而下列方法为检验方法,而非严谨的证明方法。对于类似方法也应注意甄别。最简单的方法是应用欧拉公式[2]。 由于 e i x = cos x + i sin x {\displaystyle e^{ix}=\cos x+i\sin x\,} 所以 ( cos x + i sin x ) n = ( e i x ) n = e i n x = e i ( n x ) = cos ( n x ) + i sin ( n x ) {\displaystyle {\color {Green}(\cos x+i\sin x)^{n}}=(e^{ix})^{n}=e^{inx}=e^{i(nx)}={\color {Green}\cos(nx)+i\sin(nx)}} 用棣莫弗公式求根 此定理可用来求单位复数的 n {\displaystyle n} 次方根。设 | z | = 1 {\displaystyle |z|=1} ,表为 z = cos θ + i sin θ {\displaystyle z=\cos \theta +i\sin \theta } 若 w n = z {\displaystyle w^{n}=z} ,则 w {\displaystyle w} 也可以表成: w = cos ϕ + i sin ϕ {\displaystyle w=\cos \phi +i\sin \phi } 按照棣莫弗公式: w n = ( cos ϕ + i sin ϕ ) n = cos n ϕ + i sin n ϕ = cos θ + i sin θ = z {\displaystyle w^{n}=(\cos \phi +i\sin \phi )^{n}=\cos n\phi +i\sin n\phi =\cos \theta +i\sin \theta =z} 于是得到 n ϕ = θ + 2 k π {\displaystyle n\phi =\theta +2k\pi } (其中 k ∈ Z {\displaystyle k\in \mathbb {Z} } )也就是: ϕ = θ + 2 k π n {\displaystyle \phi ={\dfrac {\theta +2k\pi }{n}}} 当 k {\displaystyle k} 取 0 , 1 , … , n − 1 {\displaystyle 0,1,\ldots ,n-1} ,我们得到 n {\displaystyle n} 个不同的根: w = cos ( θ + 2 k π n ) + i sin ( θ + 2 k π n ) , k = 0 , 1 , … , n − 1 {\displaystyle w=\cos({\dfrac {\theta +2k\pi }{n}})+i\sin({\dfrac {\theta +2k\pi }{n}}),k=0,1,\ldots ,n-1} 参考文献 参考资料 ^ Lial, Margaret L.; Hornsby, John; Schneider, David I.; Callie J., Daniels. College Algebra and Trigonometry 4th. Boston: Pearson/Addison Wesley. 2008: 792. ISBN 9780321497444. ^ 林琦焜. 棣美弗定理與 Euler 公式 (PDF). 中央研究院. 2006-12-22 [2017-06-18]. (原始内容存档 (PDF)于2021-01-19).