投射模

交换代数中,一个 上的投射模自由模的推广,它有多种等价的定义;就几何的观点,投射模之于自由模一如向量丛之于平凡向量丛。在范畴论的语言中,投射模可以推广为一个阿贝尔范畴中的投射对象

投射模首见于昂利·嘉当塞缪尔·艾伦伯格的重要著作 Homological Algebra,由此定义的投射分解是同调代数的基本概念之一。

定义

此节给出投射模的两种等价定义。

自由模的直和项

投射模最直接的刻划是一个自由模的直和项;换言之,一个模   是投射模,当且仅当存在另一个模   使得  自由模。此时    的一个投影态射的项。

提升性质

较容易操作也较符合范畴论思想的定义是利用提升性质。模   是投射模,当且仅当对任何模满射   及模态射  ,存在模态射   使得  (请留意:在此不要求唯一性)。用交换图表现则更明了:

 

此定义的优势在于它可以推广到阿贝尔范畴,从而引至投射对象的概念,在此并不需要考虑自由对象。反转箭头则得到对偶概念内射模

另一种在探讨Ext函子时特别有用的表述如下:模   是投射模,当且仅当任何正合序列

 

都诱导出正合序列

 

换言之, 正合函子;实则对任何模  ,函子   总是左正合的,而投射性相当于右正合性。由此立刻得到投射模的同调刻划:  是投射模当且仅当

 

向量丛与局部自由模

投射模理论的想法之一是向量丛的类比,对于紧豪斯多夫空间上的实值连续函数环,或紧光滑流形上的光滑函数,此类比有严格的表述,详阅条目Swan 定理

向量丛是局部自由的;只要环上有合适的局部化概念,例如对环的一个积性子集局部化,则可以定义局部自由模。对于诺特环上的有限生成模,其投射性等价于局部自由性。对于非诺特环,则存有局部自由但非投射模的例子。

性质

  • 投射模的直和与直和项仍是投射模。
  •  ,则   是个投射左  -模。
  • 投射模的子模不一定是投射模。使得所有投射左模的子模都是投射左模的环称作左继承的。
  • 一个环上的全体有限生成投射模构成一个正合范畴(亦见代数K-理论)。
  • 除环上的向量空间是自由模,因而是投射模。使所有模为投射模的环称为半单环
  • 阿贝尔群视为  -模;则投射模对应于自由阿贝尔群。一般而言,此性质对主理想域也成立。
  • 投射模皆为平坦模,反之不然,例如   是平坦  -模,但是非投射。
  • 关于“局部自由=投射”的想法,Kaplansky 证出如下定理:局部环上的投射模皆为自由模。有限生成投射模的情形容易证明,一般情形则较困难。

塞尔问题

Quillen-Suslin定理是另一个深入的结果:它断言若  主理想域,而   是其上的多项式环,则任何投射  -模都是自由模。

此问题在域的情形由塞尔首先提出。Bass 解决了非有限生成模的情形,Quillen 与 Suslin 则同时而独立地处理有限生成模的情形。

文献

  • Serge Lang, Algebra (2002), Graduate Texts in Mathematics 211, Springer. ISBN 0-387-95385-X