后继函数

数学后继函数后继运算 是一个 原始递归函数 S 使得 S(n)= n+1,n 为自然数。例如, S(1)=2和 S(2)=3。后继函数在西方国家也称为zeration,因为它是第零类超运算:H0(a, b)=1+ b

概述

后继函数被用在定义自然数的皮亚诺公理。为此,它不是由加法所定义,而是用作定义所有大于0的自然数和加法。例如,1被定义为 S(0),而且自然数的加法是由递归定义:

m +0 = m
m + S(n) = S(m)+ n

这就产生了 5 + 2 = 5 + S(1) = S(5) + 1 = 6 + 1 = 6 + S(0) = S(6) + 0 = 7 + 0 = 7

过往曾经提出了几种方法使用集合论构造自然数,请参看集合论的自然数的定义。一个常见的方法是定义数字0为空集{ },和后继数S(x)=x∪{ x }。然后无穷公理将确保存在一组ℕ包含0且对S闭合;ℕ的元素称为自然数。[1]

后续函数是第0级的超运算 (用于建立加法乘法迭代幂次,……)。

它的其中一个原始职能是通过递归进行定义。

参看

参考文献

  1. ^ Halmos, Chapter 11
  • Paul R. Halmos. Naive Set Theory. Nostrand. 1968.