圆锥曲线

圆锥曲线英语:conic section),又称圆锥截痕圆锥截面二次平面曲线,是数学几何学中透过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的曲线,包括椭圆抛物线双曲线及一些退化类型。

圆锥曲线

圆锥曲线在约公元前200年时就已被命名与研究,其发现者为古希腊数学家阿波罗尼奥斯,当时阿波罗尼阿斯已对它们的性质做过系统性的研究。

圆锥曲线应用最广泛的定义为(椭圆,抛物线,双曲线的统一定义):动点到一定点(焦点)的距离与其到一定直线(准线)的距离之比为常数(离心率)的点的集合是圆锥曲线。对于得到椭圆,对于得到抛物线,对于得到双曲线。

定义

 定点 为定直线 为正常数,称满足 的动点 的轨迹为圆锥曲线

其中 为其焦点 准线 离心率

由此可知,圆锥曲线的极坐标参数方程  (正负号由所选焦点与定直线所处的位置不同而引起)。 其中  极轴夹角 为定直线 ,即准线到焦点的距离。

将参数方程转换成直角坐标方程易得,

 时,曲线为抛物线
 时,
 时,曲线为椭圆
 时,曲线为双曲线

圆锥曲线的类型

圆锥曲线 方程 离心率e 焦距c 半正焦弦( 焦点准线距离(p
         
椭圆          
抛物线          
双曲线          
 
圆锥曲线的类型:1.抛物线2.圆和椭圆3.双曲线

椭圆:当平面只与圆锥面一侧相交,交截线是闭合曲线的时候,且不过圆锥顶点,结果为近似椭圆。如果截面与圆锥面的对称轴垂直,结果为圆。

抛物线:截面仅与圆锥面的一条母线平行,结果为抛物线。

双曲线:截面与圆锥面两侧都相交,且不过圆锥顶点,结果为双曲线。

在平面通过圆锥的顶点的时候,有一些退化情况。交截线可以是一个直线、一个点、或一对直线。

几何性质

椭圆(ellipse)

椭圆上的点到两个焦点的距离和等于长轴长(2a)。

抛物线(Parabola)

抛物线上的点到焦点的距离等于该点到准线的距离。

双曲线(Hyperbola)

双曲线上的点到两个焦点的距离之差的绝对值等于贯轴长(2a)。

离心率

 
有固定焦点F和准线的圆(e=0) 椭圆(e=1/2)抛物线 (e=1)双曲线(e=2)

对于椭圆和双曲线,可以采用两种焦点-准线组合,每个都给出同样完整的椭圆或双曲线。从中心到准线的距离是 ,这里的 是椭圆的半长轴,或双曲线的半实轴。从中心到焦点的距离是 

在圆的情况下, 且准线被假想为离中心无限远。这时声称圆由距离是到L的距离的e倍的所有点组成是没有意义的。

圆锥曲线的离心率因此是对它偏离于圆的程度的度量。

对于一个给定的  越接近于1,半短轴就越小。

笛卡尔坐标

笛卡尔坐标系内,二元二次方程的图像可以表示圆锥曲线,并且所有圆锥曲线都以这种方式引出。方程有如下形式

 
此处参数   不得皆等于 

矩阵表示

上述方程可以使用矩阵表示为[1]

 

亦可以写作

 

这是在射影几何中使用的齐次形式的一个特例。 (参见齐次坐标)

下文中记 ,记 

类别

借由 ,我们可以判定圆锥曲线是否退化。

  •  ,则圆锥曲线 退化。
  •  ,则圆锥曲线 未退化。

若圆锥曲线未发生退化,则[2]

  •  , 方程表示一个椭圆
    • 对于椭圆,当 时, 为一个实椭圆;当  为一个虚椭圆。(例如, 没有任何实值解,是一个虚椭圆)
    • 特别的,若   ,作为椭圆的特殊情况, 表示一个
  •   表示一条抛物线
  •   表示一条双曲线
    •   表示一条直角双曲线。

若圆锥曲线发生退化,则

  •  ,作为椭圆的退化, 为一个点。
  •  ,作为抛物线的退化, 为两条平行直线。
    •   为两条不重合的平行直线。
    •   为两条重合的平行直线。(特别的,此时 为1)
    •   直线不存在与实平面中。
  •  ,作为双曲线的退化, 为两条相交直线。(同时,也是双曲线的渐近线)

在此处的表达中,  为多项式系数,而非半长轴 和半短轴 

不变量

矩阵  的行列式,以及  )在任意的旋转和坐标轴的交换中保持不变。[2][3][4] [5]:60–62页 常数项 以及 仅在旋转中保持不变。[5]:60–62页

离心率

 的离心率可被写作关于 系数的函数。[6]  抛物线,其离心率为1。其它情况下,假设 表达一个未退化的椭圆或双曲线,那么

 

此处若 为负则 ;若 为正则 

此外,离心率 也是下述方程的一个正根[5]:89页

 

此处   。对于椭圆或抛物线,该方程只有一个正根,即其离心率;对于双曲线,其有两个正根,其中的一个为其离心率。

变换为标准方程

对于椭圆或双曲线, 可用变换后的变量 表示为如下所示的标准形式[7]

 

或等价的

 

此处,   特征值,也即下述方程的两根:

 

同时,  

透过坐标变换,各种类型的圆锥曲线都可以表示为其标准形式:

方程式 椭圆 抛物线 双曲线
标准方程式        
参数方程式        
 

极坐标

 
椭圆的半正焦弦

圆锥曲线的半正焦弦(semi-latus rectum)通常指示为 ,是从单一焦点或两个焦点中的一个,到圆锥曲线自身的,沿着垂直于主轴(长轴)的直线度量的距离。它有关于半长轴 ,和半短轴 ,通过公式  

极坐标系中,圆锥曲线有一个焦点在原点,如果有另一个焦点的话它在正x轴上,给出自方程

 

或者,

 

如上,对于 得到一个圆,对于 得到椭圆,对于 得到抛物线,对于 得到双曲线。

齐次坐标

齐次坐标下圆锥曲线可以表示为:

 

或表示为矩阵

 

矩阵 叫做“圆锥曲线矩阵”。

 叫做圆锥曲线的行列式。如果 则这个圆锥曲线被称为退化的,这意味着圆锥曲线是两个直线的联合(两相交直线,两平行直线或两重合直线)或一点。。

例如,圆锥曲线 退化为两相交直线: 

类似的,圆锥曲线有时退化为两重合直线(两直线重合成一条):  

 被称为圆锥曲线的判别式。如果 则圆锥曲线是抛物线,如果 则是双曲线,如果 则是椭圆。如果  ,圆锥曲线是;如果  ,它是直角双曲线。可以证明在复射影平面 中,两个圆锥曲线共有四个点(如果考虑重根),所以永不多于4个交点并总有1个交点(可能性:4个不同的交点,2个单一交点和1个双重交点,2个双重交点,1单一交点和1个三重交点,1个四重交点)。如果存在至少一个重根 的交点,则两个圆锥曲线被称为相切的。如果只有一个四重交点,两个圆锥曲线被称为是共振的。

进一步的,每个直线与每个圆锥曲线相交两次。如果两交点是重合成一点,则这个线被称为切线。因为所有直线交圆锥曲线两次,每个圆锥曲线有两个点在无穷远(与无穷远线的交点)。如果这些点是实数的,圆锥曲线必定是双曲线;如果它们是虚共轭,圆锥曲线必定是椭圆,如果圆锥曲线有双重点在无穷远,则它是抛物线。如果在无穷远的点是  ,则圆锥曲线是。如果圆锥曲线有一个实数点和一个虚数点在无穷远,或它有两个不共轭的虚数点,它不是抛物线、不是椭圆、不是双曲线。

参考文献

  1. ^ Brannan, Esplen & Gray 1999,第30页
  2. ^ 2.0 2.1 Protter & Morrey 1970,第326页
  3. ^ Wilson & Tracey 1925,第153页
  4. ^ Pettofrezzo, Anthony, Matrices and Transformations, Dover Publ., 1966, p. 110.
  5. ^ 5.0 5.1 5.2 Spain, Barry, Analytical Conics, Dover, 2007 (originally published 1957 by Pergamon Press).
  6. ^ Ayoub, Ayoub B., "The eccentricity of a conic section," The College Mathematics Journal 34(2), March 2003, 116–121.
  7. ^ Ayoub, A. B., "The central conic sections revisited", Mathematics Magazine 66(5), 1993, 322–325.

外部链接