浮点数
本条目存在以下问题,请协助改善本条目或在讨论页针对议题发表看法。
|
在计算机科学中,浮点(英语:floating point,缩写为FP)是一种对于实数的近似值数值表现法,由一个有效数字(即尾数)加上幂数来表示,通常是乘以某个基数的整数次指数得到。以这种表示法表示的数值,称为浮点数(floating-point number)。利用浮点进行运算,称为浮点计算,这种运算通常伴随着因为无法精确表示而进行的近似或舍入。
计算机使用浮点数运算的主因,在于电脑使用二进位制的运算。例如:4÷2=2,4=100(2)、2=010(2),在二进制相当于退一位数。则1.0÷2=0.5=0.1(2)也就是。依此类推二进制的0.01(2)就是十进制==0.25。由于十进位制无法准确换算成二进位制的部分小数,如0.1,因此只能使用近似值的方式表达。
这种表示方法类似于基数为10的科学记数法,在计算机上,通常使用2为基数的幂数来表示。一个浮点数a由两个数m和e来表示:a = m × be。在任意一个这样的系统中,我们选择一个基数b(记数系统的基)和精度p(即使用多少位来存储)。m(即尾数)是形如±d.ddd...ddd的p位数(每一位是一个介于0到b-1之间的整数,包括0和b-1)。如果m的第一位是非0整数,m称作正规化的。有一些描述使用一个单独的符号位(s 代表+或者-)来表示正负,这样m必须是正的。e是指数。
这种表示法的设计,来自于对于值的表现范围,与精密度之间的取舍:可以在某个固定长度的存储空间内表示出某个实数的近似值。例如,一个指数范围为±4的4位十进制浮点数可以用来表示43210,4.321或0.0004321,但是没有足够的精度来表示432.123和43212.3(必须近似为432.1和43210)。当然,实际使用的位数通常远大于4。
此外,浮点数表示法通常还包括一些特别的数值:+∞和−∞(正负无穷大)以及NaN('Not a Number')。无穷大用于数太大而无法表示的时候,NaN则指示非法操作或者无法定义的结果。
其中,无穷大,可表示为inf,在内存中的值是阶码为全1,尾数全0。而NaN在内存中的值则是阶码全1,尾数不全0。
计算机的浮点数
浮点指的是带有小数的数值,浮点运算即是小数的四则运算,常用来测量电脑运算速度。大部分计算机采用二进制(b=2)的表示方法。位(bit)是衡量浮点数所需存储空间的单位,通常为32位或64位,分别被叫作单精度和双精度。有一些计算机提供更大的浮点数,例如英特尔公司的浮点运算单元Intel8087协处理器(以及其被集成进x86处理器中的后代产品)提供80位长的浮点数,用于存储浮点运算的中间结果。还有一些系统提供128位的浮点数(通常用软件实现)。
浮点数的标准
在电脑使用的浮点数被电气电子工程师协会(IEEE)规范化为IEEE 754。
举例
π的值可以表示为π = 3.1415926...10(十进制)。当在一个支持17位尾数的计算机中表示时,它会变为0.11001001000011111 × 22。
准确性
由于浮点数不能表达所有实数,浮点运算与相应的数学运算有所差异,有时此差异极为显著。
比如,二进制浮点数不能表达0.1和0.01,0.1的平方既不是准确的0.01,也不是最接近0.01的可表达的数。单精度(24比特)浮点数表示0.1的结果为 , ,即
- 0.100000001490116119384765625
此数的平方是
- 0.010000000298023226097399174250313080847263336181640625
但最接近0.01的可表达的数是
- 0.009999999776482582092285156250
浮点数也不能表达圆周率 ,所以 不等于正无穷,也不会溢出。下面的C语言代码
double pi = 3.1415926535897932384626433832795;
double z = tan(pi/2.0);
的计算结果为16331239353195370.0,如果用单精度浮点数,则结果为−22877332.0。同样的, 。
由于浮点数计算过程中丢失了精度,浮点运算的性质与数学运算有所不同。浮点加法和乘法不符合结合律和分配律。
事故
Intel Pentium CPU早期的60-100MHz P5版本在浮点运算单元有一个问题,在极少数情况下,会导致除法运算的精确度降低。这个缺陷于1994年被发现,变成如今广为人知的Pentium FDIV bug,同时这一事件导致Intel陷入巨大的窘态,创建召回项目来回收有问题的处理器。