序列紧
在数学上, 若一个拓扑空间里,每个无穷序列都有收敛子序列,则称该拓扑空间序列紧(英语:sequentially compact)。 虽然对于度量空间,紧等价于序列紧,但是对于一般的拓扑空间来说,紧(英语:compact)和序列紧是两个不等价的性质。
例子和性质
实数轴上的标准拓扑不是序列紧的,例如 (sn = n) 便是一个没有收敛子序列的序列。
若一个空间是度量空间,则其为序列紧当且仅当其为紧。[1] 然而,一般情况下,存在序列紧而非紧的拓扑空间,比如具有序拓扑的首个不可数序数,也存在紧而非序列紧的拓扑空间,比如由 多个单位闭区间组成的积空间。[2]
有关概念
- 若拓扑空间 X 的任意无穷子集都有一个极限点在 X 中,则称 X 为聚点紧的。
- 若拓扑空间 X 的任意可数开覆盖都有一个有限子覆盖,则称 X 为可数紧的。
对于度量空间,序列紧、聚点紧、可数紧、紧都是互相等价的性质。
对于序列空间,序列紧与可数紧等价。[3]
相关条目
- 波尔查诺-魏尔斯特拉斯定理
参考来源
- ^ Willard, 17G, p. 125.
- ^ Steen and Seebach, Example 105, pp. 125—126.
- ^ Engelking, General Topology, Theorem 3.10.31
K.P. Hart, Jun-iti Nagata, J.E. Vaughan (editors), Encyclopedia of General Topology, Chapter d3 (by P. Simon) - ^ Brown, Ronald, "Sequentially proper maps and a sequential compactification", J. London Math Soc. (2) 7 (1973) 515-522.
参考书目
- Munkres, James. Topology 2nd. Prentice Hall. 1999. ISBN 0-13-181629-2.
- Steen, Lynn A. and Seebach, J. Arthur Jr.; Counterexamples in Topology, Holt, Rinehart and Winston (1970). ISBN 0-03-079485-4.
- Willard, Stephen. General Topology. Dover Publications. 2004. ISBN 0-486-43479-6.