辐角

数学中,复数辐角是指复数在复平面上对应的向量和正向实数轴所成的有向。复数的辐角值可以是一切实数,但由于相差(即弧度)的辐角在实际应用中没有差别,所以定义复数的辐角主值为辐角)后的余数,定义取值范围在)之间。复数的辐角是复数的重要性质,在不少理论中都有重要作用。

定义

 
复数辐角的直观示意图

设有非零复数 ,记作 ,其中的  为实数,那么复数 的辐角 指的是使下列等式:

 

成立的任何实数 。直观上来说,假设非零复数 在复平面 中对应的向量是 (右图蓝色向量),那么它的辐角是所有能够描述正实数轴到 的转角的有向角。其中有向角的正方向规定为逆时针方向。图中可以看出,相差 的倍数的角都可以是辐角。这个性质也可以从三角函数  是以 为周期的周期函数中推导出来。

只有非零复数才有辐角,复数 的辐角是没有定义的。

辐角主值

同一个复数的辐角有无穷多个,以集合表示为 ,而对于所有  都相同,所以实际只需要以其中一个辐角为代表,此辐角称为辐角主值主辐角,记作 。一般约定使用区间 中的值作为辐角主值(也有另一种常见的约定是以区间 中的值作为辐角主值)。如果复数的辐角主值是 ,那么它的所有辐角值就是:

 

辐角的计算

给定一个形如 的非零复数,辐角主值 是将它映射到区间 中的函数。辐角主值函数可以用反三角函数来描述:

 

或者配合半角公式

 

性质

复数 的一个辐角 绝对值 可以用来组成复数的极坐标形式:

 

在极坐标形式下计算,可以得到复数乘积和商的辐角的规律:

 
 

于是对复数幂次的辐角也有:

 

复数的共轭的辐角则满足:

 

参考来源

  • Ahlfors, Lars. Complex analysis: an introduction to the theory of analytic functions of one complex variable 3rd. New York, London: McGraw-Hill. 1979. ISBN 0-07-000657-1. 
  • Beardon, Alan. Complex analysis: the argument principle in analysis and topology. Chichester: Wiley. 1979. ISBN 0-471-99671-8. 
  • Borowski, Ephraim; Borwein, Jonathan. Mathematics. Collins Dictionary 2nd. Glasgow: HarperCollins. 2002 [1st ed. 1989 as Dictionary of Mathematics]. ISBN 0-00-710295-X.