有限环

数学,特别是抽象代数,有限环(Finite ring)是一个环(不一定有乘法的单位元)元素的数量有限的环。每一个有限域是有限环的一个特例,每一个有限环加法群,是一个有限阿贝尔群有限环的概念是比较新的。

1964年在《美国数学月刊》上,大卫·辛马斯特(David Singmaster)提出了以下问题:“(1)不是的非平凡有单位元环有何种结构,已经找出两个这种四阶环,还有不同的四阶环吗?(2)四阶环有多少?”

一个解决方案由D.M. 布鲁姆(D.M. Bloom)在《美国数学月刊》(71:919-20)证明,得出结论:有11个四阶环,其中四个有乘法单位元。事实上,四阶环种类多少介绍了问题的复杂性,在四阶群的一类四阶循环群C4上有三种四阶环,在在四阶群的另一类克莱因四元群上有八种四阶环。

在同一杂志《美国数学月刊》(75:512-14)的由K.艾尔德瑞志(K. Eldrige)在1968年对有限环的非交换性得出两个定理:如果有单位元1的有限环的阶有一个3次分解,它是可交换的。非交换有单位元1的有限环,如果是一个素数P的3次方,那么这环同构于这素数伽罗瓦域的上三角2×2矩阵环

由R.雷格哈文德拉(R. Raghavendra)在1969年对素数P的3次阶方的环的研究得到了进一步发展。在1973年罗伯特·吉尔默和乔·莫特也发表了论文《素数p的3次阶方的结合环》。弗洛尔和威森鲍尔对素数P的3次阶方的环又有推进(1975),明确的结论是通过同构类来进行的。由V.G.安提普金和V.P.艾利查洛夫(1982)写在《西伯利亚数学杂志》(23:457-64)。他们证明:p > 2,数目是p3+50。 综上环结构的研究已有成果如下: 凡素阶环都2个 凡两素素乘阶环都4个 凡素阶环平方都11个 凡素阶环平方与一素数乘阶都22个 8阶环52个 大于是的素数3次方阶环个数为3p + 50

韦德伯恩定理

  • 韦德伯恩小定理
  • 阿廷-韦德伯恩定理
  • 约瑟夫·韦德伯恩除给出同阶有限环数目,更进著名的定理---韦德伯恩小定理,声称任何有限除环必然交换(因此是有限域)。
  • 纳森·雅各布森后来发现保证环交换的又一条件:

对于环R的任一元素r,如果存在大于1的正整数n,使得下式成立,则必为交换环n > 1 如果 rn = r, 则必为交换环

另一方面,有限单群分类定理是二十世纪数学的一个重大突破,其证明跨越成千上万的杂志页面,这重大突破使有限环的分类难度大为降低。

  • n个元素的环不同种类个数有数列:1, 1, 2, 2, 11, 2, 4, 2, 52, 11, 4, 2, 22, 2, 4, 4, 390, 2, 22, 2, 22, 4, 4, 2, 104, 11, 4, 59, 22, 2, 8, 2....

参考文献

  • Gregory Dresden (2005) Small Rings, a research report of the work of 13 students and Prof. Sieler at a Washington & Lee University class in Abstract algebra (Math 322).
  • Gregory Dresden (2005) Rings with four elements.
  • Bernard A. McDonald (1974) Finite Rings with Identity, Marcel Dekker 整数数列线上大全OEIS A027623
  • 有限单群分类定理